Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tRNA suppressor mutation in human mitochondria

Abstract

Mitochondrial mutations are associated with a wide spectrum of human diseases1,2. A common class of point mutations affects tRNA genes, and mutations in the tRNA-leu(UUR) gene (MTTL1) are the most frequently detected. In earlier studies, we showed that lung carcinoma cybrid cells containing high levels (greater than 95%) of mutated mtDNA from a patient with the pathological nucleotide pair (np) 3243 tRNA-leu(UUR) mutation can remain genotypically stable over time, and exhibit severe defects in mitochohdrial respiratory metabolism3,4. From such a cybrid containing 99% mutated mtDNA, we have isolated a spontaneous derivative that retains mutant mtDNA at this level but which has nevertheless reverted to the wild-type phenotype, based on studies of respiration, growth in selective media, mitochondrial protein synthesis and biogenesis of mitochondrial membrane complexes. The cells are heteroplasmic for a novel anticodon mutation in tRNA-leu(CUN) at np 12300, predicted to generate a suppressor tRNA capable of decoding UUR leucine codons. The suppressor mutation represents approximately 10% of the total mtDNA, but was undetectable in a muscle biopsy sample taken from the original patient or in the parental cybrid. These results indicate that the primary biochemical defect in cells with high levels of np 3243 mutated mtDNA is the inability to translate UUR leucine codons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Larsson, N.G. & Clayton, D.A. Molecular genetic aspects of human mitochondrial disorders. Annu Rev. Genet. 29, 151–178 (1995).

    Article  CAS  Google Scholar 

  2. Fadic, R. & Johns, D.R. Clinical spectrum of mitochondrial diseases. Semin. Neurol. 16, 11–20 (1996).

    Article  CAS  Google Scholar 

  3. Dunbar, D.R., Moonie, P.A., Jacobs, H.T. & Holt, I.J. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc. Natl. Acad. Sci. USA 92, 6562–6566 (1995).

    Article  CAS  Google Scholar 

  4. Dunbar, D.R., Moonie, P.A., Zeviani, M. & Holt, I.J. Complex I deficiency is associated with 3243G/C mitochondrial DNA in osteosarcoma cell cybrids. Hum. Mol. Genet. 5, 123–129 (1996).

    Article  CAS  Google Scholar 

  5. King, M.P., Koga, Y., Davidson, M. & Schon, E.A. Defects in mitochondrial protein-synthesis and respiratory-chain activity segregate with the transfer RNA(leu)(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Mol. Cell. Biol. 12, 480–490 (1992).

    Article  CAS  Google Scholar 

  6. Kaufmann, P. et al. Mitochondrial DNA and RNA processing in MELAS. Ann. Neurol. 40, 172–180 (1996).

    Article  CAS  Google Scholar 

  7. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  8. Murgola, E.J. Translational suppression: when two wrongs DO make a right. in tRNA: Structure, Biosynthesis and Function (eds Söil, D. & RajBhandary, U.L.) 491–509 (ASM Press, Washington DC, 1995).

    Chapter  Google Scholar 

  9. Carbon, J., Squires, C. & Hill, C.W. Glycine transfer RNA of Escherichia coli. II. Impaired GGA-recognition in strains containing a genetically altered transfer RNA, reversal by a secondary suppressor mutation. J. Mol. Biol. 52, 571–584 (1970).

    Article  CAS  Google Scholar 

  10. Pages, D., Hijazi, K., Murgola, E.J., Finelli, J. & Buckingham, R.H. Suppression of a double missense mutation by a mutant transfer RNA-phe in Escherichia coli. Nucleic Acids Res. 19, 867–869 (1991).

    Article  CAS  Google Scholar 

  11. Chiu, Y.H. & Morris, N.R. Genetic and molecular analysis of a tRNA(Leu) missense suppressor of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 145, 707–714 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moraes, C.T. et al. A mitochondrial transfer RNA anticodon swap associated with a muscle disease. Nature Genet. 4, 284–288 (1993).

    Article  CAS  Google Scholar 

  13. Van den Ouweland, J.M.W. et al. Mutation in mitochondrial transfer RNA (leu(UUR)) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet. 1, 368–371 (1992).

    Article  CAS  Google Scholar 

  14. Jean-Francois, M.J.B. et al. Heterogeneity in the phenotypic-expression of the mutation in the mitochondrial tRNA(leu(UUR)) gene generally associated with the MELAS subset of mitochondrial encephalomyopathies. Aust. N. Z. J. Med. 24, 188–193 (1994).

    Article  CAS  Google Scholar 

  15. Mariotti, C. et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J. Neurol. 242, 304–312 (1995).

    Article  CAS  Google Scholar 

  16. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition. in tRNA: Structure, Biosynthesis and Function (eds Söil, D. & RajBhandary, U.L.) 207–223 (ASM Press, Washington DC, 1995).

    Chapter  Google Scholar 

  17. Heckman, J.E. et al. Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl. Acad. Sci. USA 77, 3159–3163 (1980).

    Article  CAS  Google Scholar 

  18. Martin, R.P. et al. [5-(carboxymethyl)aminomethyl]uridine is found in the anticodon of yeast mitochondrial tRNAs recognizing two-codon families ending in a purine. Biochemistry 29, 956–959 (1990).

    Article  CAS  Google Scholar 

  19. Mosmann, T. Rapid colorimetric assay for cellular growth and survival-application to proliferation and cyto-toxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  Google Scholar 

  20. Reid, F.M., Rovio, A., Holt, I.J. & Jacobs, H.T. Molecular phenotype of a human lymphoblastoid cell-line homoplasmic for the np 7445 deafness-associated mitochondrial mutation. Hum. Mol. Genet. 6, 443–449 (1997).

    Article  CAS  Google Scholar 

  21. Reid, F.M., Vernham, G.A. & Jacobs, H.T. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum. Mutat. 3, 243–247 (1994).

    Article  CAS  Google Scholar 

  22. Chomyn, A. et al. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy patient mitochondria. Mol. Cell. Biol. 11, 2236–2244 (1991).

    Article  CAS  Google Scholar 

  23. Schagger, H. & Von Jagow, G. Tricine sodium dodecyl-sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 kDa to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

  24. Nijtmans, L.G.J., Klement, P., Houstek, J. & Van den Bogert, C. Assembly of mitochondrial ATP synthase in cultured human cells–implications for mitochondrial diseases. Biochim. Biophys. Acta 1272, 190–198 (1995).

    Article  Google Scholar 

  25. Morrissey, J.H. Silver stain for proteins in polyacrylamide gels—a modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117, 307–310 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellatif El Meziane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meziane, A., Lehtinen, S., Hance, N. et al. A tRNA suppressor mutation in human mitochondria. Nat Genet 18, 350–353 (1998). https://doi.org/10.1038/ng0498-350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing