Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor

Abstract

The rhizomelic form of chondrodysplasia punctata (RCDP) is an autosomal recessive disease of peroxisome biogenesis characterized by deficiencies in several peroxisomal proteins, including the peroxisomal enzymes of plasmalogen biosynthesis and peroxisomal 3-ketoacyl thiolase1. In cultured fibroblasts from patients with this disorder, both the peroxisomal targeting and proteolytic removal of the amino-terminal type 2 peroxisomal targeting sequence (PTS2) of thiolase are defective, whereas the biogenesis of proteins targeted by car boxy-terminal type 1 peroxisomal targeting sequences (PTS1) is unimpaired. We have previously isolated a Saccharomyces cerevisiae peroxisomal biogenesis mutant, pex7 (formerly peb1/pas7)2, which demonstrates a striking similarity to the cellular phenotype of RCDP fibroblasts in that PTS1 targeting is functional, but the peroxisomal packaging of PTS2 targeted thiolase is lacking. Complementation of this mutant has led to the identification of the protein ScPex7p3,4, a PTS2 receptor5,6. In this paper we report cloning of the human orthologue of ScPEX7, and demonstrate that this is the defective gene in RCDP. We show that expression of human PEX7 in RCDP cells rescues PTS2 targeting and restores some activity of dihydroxyacetone phosphate acyltransferase (DHAP-AT), a peroxisomal enzyme of plasmalogen biosynthesis, and we identify the mutations responsible for loss of function of PEX7 in a compound heterozygote RCDP patient. These results imply that several peroxisomal proteins are targeted by PTS2 signals and that the various biochemical and clinical defects in RCDP result from a defect in the receptor for this class of PTS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lazarow, P.B. & Moser, H.W. in The Metabolic and Molecular Basis of Inherited Disease Vol. 7 (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.), 2287–2324 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Zhang, J.W., Man, Y. & Lazarow, P.B. Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J. Cell Biol. 123, 1133–1147 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, J.W. & Lazarow, P.B. PEB1 (PAST) in Saccharomyces cerevisiae encodes a hydrophilic, intraperoxisomal protein which is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J. Cell Biol. 129, 65–80 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Marzioch, M., Erdmann, R., Veenhuis, M. & Kunau, W.-H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 13, 4908–4917 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang, J.W. & Lazarow, P.B. Peb1 p (Pas7p) Is an Intraperoxisomal Receptor for the NH2-terminal, Type 2, Peroxisomal Targeting Sequence of Thiolase: Peblp Itself Is Targeted to Peroxisomes by an NH2-terminal Peptide. J. Cell Biol. 132, 325–334 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. Rehling, P. et al. The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901–2913 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Boguski, M.S., Tolstoshev, C.M. & Bassett, D.E. Gene discovery in dbEST [letter]. Science 265, 1993–1994 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Bassett Jr, D.E. et al. Comparative genomics, genome cross-referencing and XREFdb. Trends Genet. 11, 372–373 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Miki, T. et al. Development of a highly efficient expression cDNA cloning system: Application to oncogene isolation. Proc. Natl. Acad. Sci. USA 88, 5167–5171 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. Kozak, M. An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol. 115, 887–903 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A. & Subramani, S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255–3262 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Osumi, T. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947–954 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. Motley, A., Hettema, E., Distel, B. & Tabak, H. Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell Biol. 125, 755–767 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Purdue, P.E. & Lazarow, P.B. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J. Cell Biol. 134, 849–862 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. Singh, I., Lazo, O., Contreras, M., Stanley, W. & Hashimoto, T. Rhizomelic chondrodysplasia punctata: biochemical studies of peroxisomes isolated from cultured skin fibroblasts. Arch Biochem. Biophys. 286, 277–283 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. Balfe, A., Hoefler, G., Chen, W.W. & Watkins, P.A. Aberrant subcellular localization of peroxisomal 3-ketoacyl-CoA thiolase in the Zellweger syndrome and rhizomelic chondrodysplasia punctata. Pediatr. Res. 27, 304–310 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. Slawecki, W.L. et al. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J. Cell Sci. 108, 1817–1829 (1995).

    PubMed  CAS  Google Scholar 

  18. Heymans, H.S., Oorthuys, J.W., Nelck, G., Wanders, R.J. & Schutgens, R.B. Rhizomelic chondrodysplasia punctata: another peroxisomal disorder [letter]. N. Engl. J. Med. 313, 187–188 (1985).

    PubMed  CAS  Google Scholar 

  19. Lazarow, P.B. Peroxisome structrue, function, and biogenesis. Human patients and yeast mutants show strikingly similar defects in peroxisome biogenesis. J. Neuropathol. Exp. Neurol. 54, 720–725 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. Purdue, P.E., Takada, Y. & Danpure, C.J. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate amino-transferase in primary hyperoxaluria type 1. J Cell Biol. 111, 2341–2351 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. Purdue, P.E., Lumb, M.J. & Danpure, C.J. Molecular evolution of alanine/glyoxylate aminotransferase 1 intracellular targeting. Analysis of the rabbit and marmoset genes. Eur. J. Biochem. 207, 757–766 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. Ausubel, P.M. et al. Current protocols in Molecular Biology (John Wiley and Sons, New York, New York, 1987).

    Google Scholar 

  23. Schutgens, R.B.H. et al. Deficiency of acyl-CoA:dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome. Biochem. Biophys. Res. Commun. 120, 179–184 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. Schutgens, R.B.H. et al. Acyl-CoA:dihydroxyacetone phosphate acyltransferase in human skin fibroblasts: study of its properties using a new assay method. Biochim. Biophys. Acta. 879, 286–291 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. Webber, K.O. & Hajra, A.K. Dihydroxyacetone phosphate acyltransferase. Meth. Enzymol. 209, 92–98 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. Poole, B. The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and its effect on the apparent turnover of catalase and other hepatic proteins. J Biol. Chem. 246, 6587–6591 (1971).

    PubMed  CAS  Google Scholar 

  27. Price, V.E., Sterling, W.R., Tarantola, V.A., Hartley, R.W. Jr., & Rechcigl, M. Jr., The kinetics of catalase synthesis and destruction in vivo. J. Biol. Chem. 237, 3468–3475 (1962).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Lazarow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purdue, P., Zhang, J., Skoneczny, M. et al. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15, 381–384 (1997). https://doi.org/10.1038/ng0497-381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0497-381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing