Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata

Abstract

Rhizomelic chondrodysplasia punctata (RCDP) is a rare autosomal recessive phenotype that comprises complementation group 11 of the peroxisome biogenesis disorders (PBD). PEX7, a candidate gene for RCDP identified in yeast, encodes the receptor for peroxisomal matrix proteins with the type-2 peroxisome targeting signal (PTS2). By homology probing we identified human and murine PEX7 genes and found that expression of either corrects the PTS2-import defect characteristic of RCDP cells. In a collection of 36 RCDP probands, we found two inactivating PEX7 mutations: one, L292ter, was present in 26 of the probands, all with a severe phenotype; the second, A218V, was present in three probands, including two with a milder phenotype. A third mutation, G217R, whose functional significance is yet to be determined, was present in five probands, all compound heterozygotes with L292ter. We conclude that PEX7 is responsible for RCDP (PBD CG11) and suggest a founder effect may explain the high frequency of L292ter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brul, S. et al. Genetic hetrogeneity in the cerebrohepatorenal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions - A study using complementation analysis. J. Clin. Invest. 81, 1710–1715 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shimozawa, N. et al. Standardization of complementation grouping of peroxisome-deficient disorders and the second Zellweger patient with peroxisomal assembly factor-l (PAF-I) defect. Am. J. Hum. Genet. 52, 843–844 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Moser, A.B. et al. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr. 127, 13–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Poulos, A. et al. Peroxisomal assembly defects: Clinical, pathologic and biochemical findings in two patients in a newly identified complementation group. J. Pediatr. 127, 596–599 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lazarow, P.B. & Moser, H.W. . in The Metabolic and Molecular Bases of Inherited Disease. (eds Scriver, C.R. et al.) 2287–2324 (McGraw-Hill, New York, 1995).

    Google Scholar 

  6. Slawecki, M. et al. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J. Cell Sci. 108, 1817–1829 (1995).

    PubMed  CAS  Google Scholar 

  7. Hoefler, G. et al. Biochemical abnormalities in rhizomelic chondrodysplasia punctata. J. Pediatr. 112, 726–733 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Heikoop, J.C. et al. Rhizomelic chondrodysplasia punctata: Deficiency of 3-oxoacyl-coenzyme A thiolase in peroxisomes and impaired processing of the enzyme. J. Clin. Invest. 86, 126–130 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poll-The, B.T. et al. A new type of chondrodysplasia punctata associated with peroxisomal dysfunction. J. Inher. Metab. Dis. 14, 361–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Gray, R.G.F. et al. Rhizomelic chondrodysplasia punctata - a new clinical variant. J. Inher. Metab. Dis. 15, 931–932 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Nuoffer, J.M. et al. Chondrodysplasia punctata with a mild clinical course. J. Inher. Metab. Dis. 17, 60–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Barth, P.G., Wanders, R.J.A., Schutgens, R.B.H. & Staalman, C.R. Variant rhizomelic chondrodysplasia punctata (RCDP) with normal plasma phytanic acid: Clinico-biochemical delineation of a subtype and complementation studies. Am. J. Med. Genet. 62, 164–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Smeitink, J.A.M. et al. Bone dysplasia associated with phytanic acid accumulation and deficient plasmalogen synthesis: A peroxisomal entity amenable to plasmapheresis. J. Inher. Metab. Dis. 15, 377–380 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Pike, M.G. et al. Congenital rubella syndrome associated with calcific epiphyseal stippling and peroxisomal dysfunction. J. Pediatr. 116, 88–94 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Motley, A.M. et al. Non-rhizomelic and rhizomelic chondrodysplasia punctata within a single complementation group. Biochim. Biophys. Acta. 1315, 153–158 (1996).

    Article  PubMed  Google Scholar 

  16. Wanders, R.J.A., Schumacher, H., Heikoop, J., Schutgens, R.B.H. & Tager, J.M. Human dihydroxyacetonephosphate acyltransferase deficiency: A new peroxisomal disorder. J. Inher. Metab. Dis. 15, 389–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Wanders, R.J.A. et al. Human alkyldihydroxyacetonephosphate synthase deficiency: A new peroxisomal disorder. J. Inher. Metab. Dis. 17, 315–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Distel, B. et al. A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135, 1–3 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Kunau, W.H. et al. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: Forward and reversed genetics. Biochimie 75, 209–224 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Gould, S.J., McCollum, D., Spong, A.P., Heyman, J.A. & Subramani, S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613–628 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Purdue, P.E. & Lazarow, P.B. Peroxisomal biogenesis: Multiple pathways of protein import. J. Biol. Chem. 269, 30065–30068 (1994).

    PubMed  CAS  Google Scholar 

  22. Rachubinski, R.A., Subramani, S. How proteins penetrate peroxisomes. Cell 83, 525–528 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Gould, S.J., Keller, G.A., Hosken, N., Wilkinson, J. & Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J.Cell Biol. 108, 1657–1664 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell. Biol. 9, 445–478 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Gietl, C., Faber, K.N., van der Klei, I.J. & Veenhuis, M. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc. Natl. Acad. Sci. USA 91, 3151–3155 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A. & Subramani, S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255–3262 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Osumi, T. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Comm. 181, 947–954 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Faber, K.N. et al. The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal. FEBS Lett. 357, 115–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Shimozawa, N. et al. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Dodt, G. et al. Mutations in the PTS1 receptor gene, PXR1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet.. 9, 115–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Wiemer, E.A.C. et al. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130, 51–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Fransen, M. et al. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731–7736 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Marynen, P., Fransen, M., Raeymaekers, P., Mannaerts, G.P. & Van Veldhoven, P.P. The gene for the peroxisomal targeting signal import receptor (PXR1) is located on human chromosome 12p13, flanked by TPl1 and D12S1089. Genomics 30, 366–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Yahraus, T. et al. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J. 15, 2914–2923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fukuda, S. et al. Human peroxisome assembly factor-2 (PAF-2): A gene responsible for Group C peroxisome biogenesis disorder in humans. Am. J. Hum. Genet. 59, 1210–1220 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Gould, S.J. et al. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J. Cell Biol. 135, 85–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Elgersma, Y. et al. The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for PexSp, a mobile receptor for the import of PT1-containing proteins. J. Cell Biol. 135, 97–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Erdmann, R. & Blobel, G. Identification of Pex13p, a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol. 135, 111–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Marzioch, M., Erdmann, R., Veenhuis, M. & Kunau, W.H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes.EMBO J. 13, 4908–4918 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, J.W. & Lazarow, P.B. PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J.Cell Biol. 129, 65–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Heikoop, J.C. et al. Peroxisomes of normal morphology but deficient in 3-oxoacyl-CoA thiolase in rhizomelic chondrodysplasia punctata fibroblasts. Biochim. Biophys. Acta. 1097, 69–77 (1991).

    Google Scholar 

  42. Rehling, P. et al. The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the AAS7gene. EMBO J. 15, 2901–2913 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J.W. & Lazarow, P.B. Peblp (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal targeting sequence of thiolase: Peblp itself is targeted to peroxisomes by an NH2-terminal peptide. J. Cell. Biol. 132, 325–334 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Motley, A., Hettema, E., Distel, B. & Tabak, H. Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell. Biol. 125, 755–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Dodt, G., Braverman, N., Valle, D. & Gould, S.J. From expressed sequence tags to peroxisome biogenesis disorder genes. New York Acad. Sci. (in the press).

  46. Hieter, P., Bassett, D.E. & Valle, D. The yeast genome - a common biological currency. Nature Genet. 13, 253–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8, 197–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. van der Voorn, L. & Ploegh, H. The WD-40 repeat. FEBS Letts. 307, 131–134 (1992).

    Article  CAS  Google Scholar 

  50. Neer, E.J., Schmidt, C.J., Nambudripad, R. & Smith, T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Wall, M.A. et al. The structure of the G protein heterotrimer 1α1γ2. Cell 83, 1047–1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Adams-Klages, S. et al. FAN, a novel WD-repeat protein, couples the p55 TNF-receptorto neutral sphingomyelinase. Cell 86, 937–947 (1996).

    Article  Google Scholar 

  53. Henning, K.A. et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82, 555–564 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Fong, H.K.W. et al. Repetitive segmental structure of the transducin β subunit: Homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83, 2162–2166 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goebl, M. & Yanagida, M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. TIBS 16, 173–177 (1991).

    PubMed  CAS  Google Scholar 

  56. Tzamarias, D. & Struhl, K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369, 758–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Brody, L.C. et al. Ornithine-8-aminotransferase mutations causing gyrate atrophy: Allelic heterogeneity and functional consequences. J. Biol. Chem. 267, 3302–3307 (1992).

    PubMed  CAS  Google Scholar 

  58. Dietz, H.C. et al. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 259, 680–683 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Maquat, L.E. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1, 453–465 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Cooper, D.N., Krawszak, M. & Antonarakis, S.E. in The Metabolic and Molecular Bases of Inherited Disease. (eds Scriver, C.R. et al) 259–291 (McGraw Hill, New York, 1995).

    Google Scholar 

  61. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  62. Engelhardt, J.F., Steel, G. & Valle, D. Transcriptional analysis of the human ornithine aminotransferase promoter. J. Biol. Chem. 266, 752–758 (1991).

    PubMed  CAS  Google Scholar 

  63. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, (1989).

    Google Scholar 

  64. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem. 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  65. Mitchell, G.A. et al. Human ornithine-8-aminotransferase: cDNA cloning and analysis of the structural gene. J. Biol. Chem. 263, 14288–14295 (1988).

    PubMed  CAS  Google Scholar 

  66. Gartner, J., Moser, H. & Valle, D. Mutations in the 70 kD peroxisomal membrane protein gene in Zellweger syndrome. Nature Genet. 1, 16–23 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. PCR Protocols: A Guide to Methods and Applications.(Academic Press, New York, 1990).

  68. Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gould, S.J., Keller, G.A. & Subramani, S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105, 2923–2931 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braverman, N., Steel, G., Obie, C. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 15, 369–376 (1997). https://doi.org/10.1038/ng0497-369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0497-369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing