Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia

Abstract

Fanconi anaemia (FA) is an autosomal recessive disease characterized by bone marrow failure, variable congenital malformations and predisposition to malignancies1,2. Cells derived from FA patients show elevated levels of chromosomal breakage and an increased sensitivity to bifunctional alkylating agents such as mitomycin C (MMC) and diepoxybutane (DEB)3,4. Five complementation groups have been identified by somatic cell methods5,6, and we have cloned the gene defective in group C (FAC)7. To understand the in vivo role of this gene, we have disrupted murine Fac and generated mice homozygous for the targeted allele. The −/− mice did not exhibit developmental abnormalities nor haematologic defects up to 9 months of age. However, their spleen cells had dramatically increased numbers of chromosomal aberrations in response to MMC and DEB. Homozygous male and female mice also had compromised gametogenesis, leading to markedly impaired fertility, a characteristic of FA patients2. Thus, inactivation of Fac replicates some of the features of the human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fanconi, G. Familial constitutional panmyelocytopathy. Fanconi Anemia (FA). I. Clinical aspects. Semin. Hematol. 4, 233–240 (1967).

    CAS  PubMed  Google Scholar 

  2. Young, N.S. & Alter, B.R. Aplastic Anemia, Acquired and Inherited. (W.B. Saunders, Philadelphia, 1994).

    Google Scholar 

  3. Sasaki, M.S. & Tonomura, A. A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 33, 1829–1836 (1973).

    CAS  PubMed  Google Scholar 

  4. Ishida, R. & Buchwald, M. Susceptibility of Fanconi's anemia lymphoblasts to DNA cross-linking and alkylating agents. Cancer Res. 42, 4000–4006 (1982).

    CAS  PubMed  Google Scholar 

  5. Strathdee, C.A., Duncan, A.M.V. & Buchwald, M. Evidence for at least four Fanconi Anaemia genes including FACC on chromosome 9. Nature Genet. 1, 196–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Joenje, H. et al. Classification of Fanconi anemia patients by complementation analysis: evidence for a fifth genetic subtype. Blood 86, 2156–2160 (1995).

    CAS  PubMed  Google Scholar 

  7. Strathdee, C.A., Gavish, H., Shannon, W.R. & Buchwald, M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356, 763–767 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Gibson, R.A., Buchwald, M., Roberts, R.G. & Mathew, C.G. Characterisation of the exon structure of the Fanconi anaemia group C gene by vectorette PCR. Hum. Mol. Genet. 2, 35–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Wevrick, R., Clarke, C.A. & Buchwald, M. Cloning and analysis of the murine Fanconi anemia group C cDNA. Hum. Molec. Genet. 2, 655–662 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Krasnoshtein, F. & Buchwald, M. Developmental expression of the Fac gene correlates with congenital defects in Fanconi anemia patients. Hum. Mol. Genet. 5, 85–93 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Brady,, G. et al. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr. Biol. 5, 909–922 (1995).

    Article  CAS  Google Scholar 

  12. Verlander, R C. et al. Mutation analysis of the Fanconi anemia gene FACC. Am. J. Hum. Genet. 54, 595–601 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamashita, T., Barber, D.L, Zhu, Y., Wu, N. & D'Andrea, A.D. The Fanconi anemia polypeptide FACC is localized to the cytoplasm. Proc. Natl. Acad. Sci. USA 91, 6712–6716 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whitney, M.A., Saito, H., Jakobs, P.M., Gibson, R.A., Moses, R.E. & Grompe, M. A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nature Genet. 4, 202–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Rosendorff, J. & Bernstein, R. Fanconi's anemia chromosome breakage studies in homozygotes and heterozygotes. Cancer. Genet. Cytogenet. 33, 175–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Cervenka, J.D, & Yasis, C. Mitomycin C test for diagnostic differentiation of idiopathic aplastic anemia and Fanconi anemia. Pediatr. 67, 119–127 (1981).

    CAS  Google Scholar 

  17. Auerbach, A.D.B., & Chaganti, R.S.K. Prenatal and postnatal diagnosis and carrier detection of Fanconi anemia by a cytogenetic method. Pediat. 67, 128–135 (1981).

    CAS  Google Scholar 

  18. Alter, B.R. et al. Fanconi's anemia and pregnancy. Br. J. Haematol. 77, 410–418 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Bargman, G.J., Shahidi, N.T., Gilbert, E.F. & Opitz, J.M. Studies of malformation syndromes in man XLVII: disappearance of spermatogonia in the Fanconi anemia syndrome. Eur. J. Pediat. 125, 163–168 (1977).

    Article  CAS  Google Scholar 

  20. Beamer, W.G., Wilson, M.C. & Leiter, E.H., The Mouse in Biomedical Research. vol. III (eds Foster, H.L., Small, J.D. & Fox, J.G.) 166ndash;247 (Academic Press, New York, 1983).

    Google Scholar 

  21. Baker, S.M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Speed, R.M. Heterologous pairing and fertility in humans. in Fertility and Chromosome Pairing: Recent Studies in Plants and Animals. (ed. Gillies, C.B.) 1–35 (CRC Press, Boca Raton, FL, 1989).

    Google Scholar 

  23. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  24. Mead, D.A., Pey, N.K., Herrnstadt, C., Marcil, R.A. & Smith, L.M. A universal method for the direct cloning of PCR amplified nucleic acid. BioTechnol. 9, 657–663 (1991).

    CAS  Google Scholar 

  25. Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones. in Gene Targeting, (ed. Joyner, A.L.) 33–61 (Oxford U. Press, New York, 1993).

    Google Scholar 

  26. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Youssoufian, H. Localization of Fanconi anemia C protein to the cytoplasm of mammalian cells. Proc. Natl. Acad. Sci. USA 91, 7975–7979 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Youssoufian, H., McAfee, M. & Kwiatkowski, D.J. Cloning and chromosomal localization of the human cytoskeletal α-actinin gene reveals linkage to the β-spectrin gene. Am. J. Hum. Genet. 47, 62–72 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Danska, J.S., Pflumio, F., Williams, C., Huner, 0., Dick, J.E. & Guides, C.J. Rescue of T cell-specific V(D)J recombination in SCID mice by DNA-damaging agents. Science 266, 450–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Till, J.E. & McCulloch, E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 4, 214–222 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Tomkins, D., Auerbach, W. et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 12, 448–451 (1996). https://doi.org/10.1038/ng0496-448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0496-448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing