Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A paternal–specific methylation imprint marks the alleles of the mouse H19 gene

Abstract

Imprinting, the differential expression of the two alleles of a gene based on their parental origin, requires that the alleles be distinguished or marked. A candidate for the differentiating mark is DNA methylation. The maternally expressed H19 gene is hypermethylated on the inactive paternal allele in somatic tissues and sperm, but to serve as the mark that designates the imprint, differential methylation must also be present in the gametes and the pre–implantation embryo. We now show that the pattern of differential methylation in the 5′ portion of H19 is established in the gametes and a subset is maintained in the pre–implanation embryo. That subset is sufficient to confer monoallelic expression to the gene in blastocysts. We propose that paternal–specific methylation of the far 5′ region is the mark that distinguishes the two alleles of H19

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Cur. Opin. Genet. Devel. 4, 265–280 (1994).

    Article  CAS  Google Scholar 

  2. Solter, D. Differential imprinting and expression of maternal and paternal genomes. A. Rev. Genet. 22, 127–146 (1988).

    Article  CAS  Google Scholar 

  3. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F. & Carnaghi, L.R. Allele specific inactivation of insulin 1 and 2 in the mouse yolk sac indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Hatada, I., Sugama, T. & Mukai, T. A new imprinted gene cloned by a methylation-sensitive genome scanning method. Nucl. Acids Res. 21, 5577–5582 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayashizaki, Y. et al. Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nature Genet. 6, 33–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Villar, A.J. & Pedersen, R.A. Parental imprinting of the Mas protooncogene in mouse. Nature Genet. 8, 373–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Guillemot, F. et al. Genomic imprinting of Mash-2, a mouse gene required for trophoblast development. Nature Genet. 9, 235–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Razin, A. & Cedar, H. DNA methylation and genomic imprinting. Cell 77, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Gruenbaum, Y., Cedar, H. & Razin, A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620–622 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Bestor, T.H. & Ingram, V.M. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity and mode of interaction with DNA. Proc. natn. Acad. Sci. U.S.A. 82, 2674–2678 (1983).

    Article  Google Scholar 

  15. Busslinger, M., Hurst, J. & Flavell, R.A. DNA methylation and the regulation of globin gene expression. Cell 34, 197–206 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Bartolomei, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Devel. 7, 1663–1673 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson-Smith, A.S., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–754 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. Imprinting of human H19; allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am. J. hum. Genet. 53, 113–124 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  21. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Devel. 6, 705–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Singer-Sam, J. et al. Use of a Hpall-polymerase chain reaction to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Molec. Cell. Biol. 10, 4987–4989 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresls. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Feil, R., Walter, J., Allen, N.D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse lgf2 and H19 genes. Development 120, 2933–2943 (1994).

    CAS  PubMed  Google Scholar 

  28. Szabo, P. & Mann, J.R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120, 1651–1660 (1994).

    CAS  PubMed  Google Scholar 

  29. Barlow, D.P. Imprinting: a gamete's point of view. Trends Genet. 10, 194–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Latham, K.E., Doherty, A.S., Scott, C.D. & Schultz, R.M. Igf2r and lgf2 gene expression in androgenetic, gynogenetic, and parthenogenetic preimplantation mouse embryos: absence of regulation by genomic imprinting. Genes Devel. 8, 290–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Z., Fung, M.R., Barlow, D.P. & Wagner, E.F. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372, 464–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Swain, J.L., Stewart, T.A. & Leder, P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Chaillet, J.R., Vogt, T.F., Beier, D.R. & Leder, P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 86, 77–83 (1991).

    Article  Google Scholar 

  34. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet. 7, 440–447 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Steenman, M.J.C. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet. 7, 433–439 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Rigby, P.W.J., Dieckmann, M., Rhodes, D. & Berg, P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  PubMed  Google Scholar 

  39. Wahl, G.M., Stern, M. & Stark, G.R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. natn. Acad. Sci. U.S.A. 76.

  40. Singer-Sam, J., LeBon, J.M., Tanguay, R.L. & Riggs, A.D. A quantitative Hpall-PCR assay to measure methylation of DNA from small numbers of cells. Nucl. Acids Res. 18, 687 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tremblay, K., Saam, J., Ingram, R. et al. A paternal–specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9, 407–413 (1995). https://doi.org/10.1038/ng0495-407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0495-407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing