Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome

Abstract

Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked condition characterized by pre-and postnatal overgrowth with visceral and skeletal anomalies. To identify the causative gene, breakpoints in two female patients with X;autosome translocations were identified. The breakpoints occur near the 5′, and 3′, ends of a gene, GPC3, that spans more than 500 kilobases in Xq26; in three families, different microdeletions encompassing exons cosegregate with SGBS. GPC3 encodes a putative extracellular proteoglycan, glypican 3, that is inferred to play an important role in growth control in embryonic mesodermal tissues in which it is selectively expressed. Initial western- and ligand-blotting experiments suggest that glypican 3 forms a complex with insulin-like growth factor 2 (IGF2), and might thereby modulate IGF2 action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simpson, J.L., Landey, S., New, M. & German, J. A previously unrecognized X-linked syndrome of dysmorphia.Birth Defects Orig. Art. Ser. XI, 18–24 (1975).

    Google Scholar 

  2. Golabi, M. & Rosen, L. A new X-linked mental retardation-overgrowth syndrome. Am. J. Med. Genet. 17, 345–358 (1984).

    Article  CAS  Google Scholar 

  3. Behmel, A., Plochl, E. & Rosenkranz, W. A new X-linked dysplasia gigantism syndrome: identical with the Simpson dysplasia syndrome. Hum. Genet. 67, 409–413 (1984).

    Article  CAS  Google Scholar 

  4. Neri, G., Marini, R., Cappa, M., Borrelli, P. & Opitz, J.M. Simpson-Golabi-Behmel syndrome: an X-linked encephalo-trophoschisis syndrome. Am. J. Med. Genet. 30, 287–299 (1988).

    Article  CAS  Google Scholar 

  5. Hughes-Benzie, R.M., Hunter, A.G., Allanson, J.E. & MacKenzie, A.E. Simpson-Golabi-Behmel syndrome assoicated with renal dysplasia and embryonal tumors: localization of the gene to Xqcen–q21. Am. J. Med. Genet. 43, 428–435 (1994).

    Article  Google Scholar 

  6. Garganta, L.C. & Bodurtha, J.N. Report of another family with Simpson-Golabi-Behmel syndrome and a review of the literature. Am. J. Med. Genet. 44, 129–135 (1992).

    Article  CAS  Google Scholar 

  7. Cohen, M.M., Jr. A comprehensive and critical assessment of overgrowth and overgrowth syndromes. Adv. Hum. Genet. 18, 181–303, 373–376 (1989).

    Article  Google Scholar 

  8. Hughes-Benzie, R.M., Allanson, J., Hunter, A. & Cole, T. The importance of differentiating Simpson-Golabi-Behmel and Beckwith-Wiedemann syndromes. J. Med. Genet. 29, 928 (1992).

    Article  CAS  Google Scholar 

  9. Punnett, H.H. Simpson-Golabi-Behmel syndrome (SGBS) in a female with an X-autosome translocation. Am. J. Med. Genet. 50, 391–393 (1994).

    Article  CAS  Google Scholar 

  10. Verloes, A., Massart, B., Dehalleux, I., Langhendries, J.P. & Koulischer, L. Clinical overlap of Beckwith-Wiedemann, Periman and Simpson-Golabi-Behmel syndromes – a diagnostic pitfall. Clin. Genetics 47, 257–262 (1995).

    Article  CAS  Google Scholar 

  11. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).

    Article  CAS  Google Scholar 

  12. Little, R.D. et al. Yeast artificial chromosomes spanning 8 Mb and 10–15 centimorgans of human cytogenetic band Xq26(1992). Proc. Natl. Acad. Sci.USA 89, 177–181 (1992).

    Article  CAS  Google Scholar 

  13. Orth, U. et al. Gene for Simpson-Golabi-Behmel syndrome is linked to HPRT in Xq26 in two European families. Am. J. Hum. Genet. 50, 388–390 (1994).

    Article  CAS  Google Scholar 

  14. Xuan, J.Y., Besner, A., Ireland, M., Hughes-Benzie, R.M. & MacKenzie, A.E. Mapping of Simpson-Golabi-Behmel syndrome to Xq25–q27. Hum. Mol. Genet. 3, 133–137 (1994).

    Article  CAS  Google Scholar 

  15. Olson, M.V., Hood, L., Cantor, C. & Botstein, D. A common language for physical mapping of the human genome. Science 245, 1434–1435 (1989).

    Article  CAS  Google Scholar 

  16. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90, 11995–11999 (1993).

    Article  CAS  Google Scholar 

  17. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  18. D'Esposito, M. et al. PCR-based immortalization and screening of hierarchical pools of cDNAs. Nucl. Acids Res. 22, 4806–4809 (1994).

    Article  CAS  Google Scholar 

  19. Kozak, M. An analysis of 5′–noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–6148 (1987).

    Article  CAS  Google Scholar 

  20. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  21. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  22. Filmus, J., Church, G. & Buick, R.N. Isolation of a cDNA corresponding to a devlopmentally regulated transcript in rat intestine. Mol. Cell. Biol. 8, 4243–4249 (1988).

    Article  CAS  Google Scholar 

  23. Stipp, C.S., Litwack, E.D. & Lander, A.D. Molecular cloning of a glypican-related heparan sulfate proteioglycan expressed in the developing rat brain. Mol. Biol. Cell 3, 65a (1992).

    Google Scholar 

  24. David, G. Integral membrane heparan sulfate proteoglycans. FASEB J. 7, 1023–1030 (1993).

    Article  CAS  Google Scholar 

  25. Mannens, M. et al. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Weidemann Syndrome and various human neoplasia. Eur. J. Hum. Genet. 2, 3–23 (1994).

    Article  CAS  Google Scholar 

  26. Hossenlopp, P., Seurin, D., Segovia-Quinson, B., Hardouin, S. & Binoux, M. Analysis of serum insulin-like growth factorbinding proteins using Western blotting: use of the method for trtration of the binding proetins and competitive binding studies. Anal. Biochem. 154, 138–143 (1986).

    Article  CAS  Google Scholar 

  27. Shimasaki, S., Shimonaka, M., Zhang, H.-P. & Ling, N. Identification of five different insulin-like growth factor binding proteins (IGFBPs) from adult rat serum and molecular cloning of a novel IGFBP-5 in rat and human. J. Biol. Chem. 266, 10646–10653 (1991).

    CAS  PubMed  Google Scholar 

  28. Lories, V., De Boeck, H., David, G., Cassiman, J.J. & Van Den Berghe, H. Heparan sulfate proteoglycans of human lung fibroblasts. J. Biol. Chem. 262, 854–859 (1987).

    CAS  PubMed  Google Scholar 

  29. Willard, H.F. et al. Report of the Fifth International Workshop on Human X Chromosome Mapping. Cytogenet. Cell Genet 67, 295–358 (1994).

    Article  CAS  Google Scholar 

  30. Vermeesch, J.R., Mertens, G., David, G. & Marynen, P. Assignment of the human glypican gene (GPC1) to 2q35–q37 by fluorescence in situ hybridization. Genomics 25, 327–329 (1995).

    Article  CAS  Google Scholar 

  31. Lindlof, M. et al. Gene deletions in X-linked muscular dystrophy. Am. J. Hum. Genet. 44, 496–503 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schlessinger, J., Lax, I. & Lemmon, M. Regulation of growth factor activation by proteoglycans: what is the role of the low affintiy receptors? Cell 83, 357–360 (1995).

    Article  CAS  Google Scholar 

  33. Green, P.J., Ferguson, M.A.J., Robinson, P.J. & Feizi, T. The cation-independent mannose-6-phosphate receptor binds to soluble GPI-linked proteins via mannose-6-phosphate. FEBS Lett. 360, 384–389 (1995).

    Article  Google Scholar 

  34. Baker, J., Liu, J.-P., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  Google Scholar 

  35. Lau, M.M.H. et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 8, 2953–2963 (1994).

    Article  CAS  Google Scholar 

  36. Wang, Z.-Q., Fung, M.R., Barlow, D.P. & Wagner, E.F. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372, 464–467 (1994).

    Article  CAS  Google Scholar 

  37. Blanchard, M.M., Taillon-Miller, P., Nowotny, P. & Nowotny, V. PCR-buffer optimization with uniform temperature regimen to facilitate automation. PCR Meth. Appl. 2, 234–240 (1992).

    Article  Google Scholar 

  38. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).

    Article  CAS  Google Scholar 

  39. Chen, E.Y. et al.Sequence of human glucose-6-phosphate dehydrogenase cloned in plasmids and a yeast artificial chromosome (YAC). Genomics 10, 792–600 (1991).

    Article  CAS  Google Scholar 

  40. Ledbetter, S.A., Schwartz, C.E., Davies, K.E. & Ledbetter, D.H. New somatic cell hybrids for physical mapping in distal Xq and the Fragile X region. Am. J. Med. Genet. 38, 418–420 (1991).

    Article  CAS  Google Scholar 

  41. Sambrook, J., Fritsch, L. & Maniatis, T., l, 2nd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

  42. Posnett, D.N., McGrath, H. & Tam, J.P. A novel method for producing anti-peptide antibodies Production of site-specific antibodies to the T cell antigen receptor beta-chain. J. Biol. Chem. 263, 1719–1725 (1988).

    CAS  PubMed  Google Scholar 

  43. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  44. Program Manual for the GCG Package, Version 7,575 Science Drive, Madison, Wisconsin, USA 53711. (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilia, G., Hughes-Benzie, R., MacKenzie, A. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12, 241–247 (1996). https://doi.org/10.1038/ng0396-241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0396-241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing