Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch

Abstract

To elucidate the molecular mechanisms whereby expanded polyglutamine stretches elicit a gain of toxic function, we expressed full-length and truncated DRPLA (dentatorubral-pallidoluysian atrophy) cDNAs with or without expanded CAG repeats in COS-7 cells. We found that truncated DRPLA proteins containing an expanded polyglutamine stretch form filamentous peri- and intranuclear aggregates and undergo apoptosis. The apoptotic cell death was partially suppressed by the transglutaminase inhibitors cystamine and monodansyl cadaverine (but not putrescine), suggesting involvement of a transglutaminase reaction and providing a potential basis for the development of therapeutic measures for CAG-repeat expansion diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. The Hunington's Disese Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  3. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Nagafuchi, S. et al. Expansion of an unstable CAG trinucleotide on chromosome 12p in dentatorubral and pallidoluysian atrophy. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kawaguchi, Y. et al. CAG repeat expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Pulst, S.M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285–291 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha la-voltage-dependent calcium channel. Nature Genet. 15, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. David, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 17, 65–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lubahn, D.B. et al. Cloning of human androgen receptor complementary DMA and localization to the X chromosome. Science 240, 327–330 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Yazawa, I. et al. Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nature Genet. 10, 99–103 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Trottier, Y. et al. Cellular localization of the huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Servadio, A. . et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Onodera, O. . et al. Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am. J. Hum. Genet. 57, 1050–1060 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Mangiarini, L. et al Exon 1 of the HD gene with an expanded cagr repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stott, K., Blackburn, J.M., Butler, P.J. & Perutz, M.F. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natal. Acad. Sci. USA 92, 6509–6513 (1995).

    Article  CAS  Google Scholar 

  25. Kahlem, P., Terre, C., Green, H. & Djian, P. Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc. Natl. Acad. Sci. USA 93, 14580–14585 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naito, H. & Oyanagi, S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurol. 32, 798–807 (1982).

    Article  CAS  Google Scholar 

  27. Ikeuchi, T. et al. Dentatorubral-pallidoluysian atrophy (DRPLA): Clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37, 769–775 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Lorand, L. et al. Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry 18, 1756–1765 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Dickson, R.B., Willingham, M.C. & Pastan, I. Binding and internalization of 125l-cc2-macroglobulin by cultured fibroblast. J. Biol. Chem. 256, 3454–3459 (1981).

    CAS  PubMed  Google Scholar 

  30. Kleman, J.-P., Aeschlimann, D., Paulsson, M. & van der Rest, M. Transglutaminase-catalyzed cross linking of fibrils of collagen V/XI in A 204 rhabdomyosarcoma cell. Biochemistry 34, 13768–13775 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Paulson, H.L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Onodera, O. et al. Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem.Biophy. Res. Commun. 238, 599–605 (1997).

    Article  CAS  Google Scholar 

  34. Jackson, M., et al. The cortical neuritic pathology of Huntington's disease. Neuropatho. Appl. Neurobiol. 21, 18–26 (1995).

    Article  CAS  Google Scholar 

  35. DiFiglia, M. et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Paulson, H.L. et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41, 453–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg, Y.P. et al. Cleavage of huntingtin by apopain, aproapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet. 13, 442–449 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Mizushima, S. & Nagata, S. . pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igarashi, S., Koide, R., Shimohata, T. et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18, 111–117 (1998). https://doi.org/10.1038/ng0298-111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing