Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome

Abstract

The Jervell and Lange-Nielsen (JLN) syndrome (MIM 220400) is an inherited autosomal recessive disease characterized by a congenital bilateral deafness associated with a QT prolongation on the electrocardiogram, syncopal attacks due to ventricular arrhythmias and a high risk of sudden death1. JLN syndrome is a rare disease, which seems to affect less than one percent of all deaf children2–4. Linkage to chromosome 11p15.5 markers was found by analysing four consanguinous families. Recombinants allowed us to map the JLN gene between D115922 and D1154146, to a 6-cM interval where KVLQT1, a potassium channel gene causing Romano-Ward (RW) syndrome, the dominant form of long QT syndrome, has been previously localized5. An homozygous deletion-insertion event (1244, −7 +8) in the C-terminal domain of this gene was detected in three affected children of two families. We found that KVLQT1 is expressed in the stria vascularis of mouse inner ear by in situ hybridization. Taken together, our data indicate that KVLQT1 is responsible for both JLN and RW syndromes and has a key role not only in the ventricular repolarization but also in normal hearing, probably via the control of endolymph homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jervell, A. & Lange-Nielsen, F. Congenital deaf mutism, functional heart disease with prolongation of the QT interval and sudden death. Am. Heart J. 54, 59–68 (1956).

    Article  Google Scholar 

  2. Fraser, G.R., Froggatt, P. & Murphy, T. Genetical aspects of the cardio-auditory syndrome of Jervell and Lange-Nielsen (congenital deafness and electrocardiographic abnormalities). Ann. Hum. Genet. 28, 133–157 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Pernot, C., Henry, M. & Debruille, C. Les syndromes cardio-auditifs d'origine génétique.. Coeur Méd Interne 13, 429–443 (1974).

    CAS  PubMed  Google Scholar 

  4. Schwartz, P.J., Periti, M. & Malliani, A. The long Q-T syndrome. Am. Heart J. 89, 378–390 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet 12, 17–23 (1996).

    Article  PubMed  Google Scholar 

  6. Lander, E. & Bolstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Tesson, F. et al. Exclusion of KCNE1 (IsK) as a candidate gene for Jervell and LangeNielsen syndrome. J. Mol. Cell Cardiol. 28, 2051–2055 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, C. et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nature Genet. 8, 141–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Schott, J.J. et al. Mapping of a gene for Long QT syndrome to chromosome 4q25–27. Am. J. Hum. Genet. 57, 1114–1122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dausse, E. et al. Readjusting the localization of long QT syndrome gene on chromosome 11p15. C. R. Acad. Sci. Paris 318, 879–885 (1995).

    CAS  PubMed  Google Scholar 

  11. Wymore, R.S. et al. Genomic organisation, nucleotide sequence, biophysical properties, and localization of the voltage-gated K+ channel gene KCNA4/Kv1.4 to mouse chromosome 2/human 11p14 and mapping of KCNC1/Kv3.1 to mouse 7/human 11p14.3–15.2 and KCNA1/Kv1.1 to human 12p13. Genomics 20, 191–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Sakagami, M. et al. Cellular localization of rat IsK protein in the stria vascularis by immunohistochemical observation. Hearing Res. 56, 168–172 (1991).

    Article  CAS  Google Scholar 

  13. Mori, N., Sakagami, M., Fukazawa, K. & Matsunaga, T. An immunohistochemical and electrophysiological study on IsK protein in the stria vascularis of the guinea pig. Eur. Arch. Otorhinolaryngol. 250, 186–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Wangemann, P., Liu, J. & Marcus, D.C. Ion transport mechanisms responsible for K+ secretion and the transepithelium voltage across marginal cells of stria vascularis in vitro. Hear. Res. 84, 19–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Takumi, T., Ohkubo, H. & Nakanishi, S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242, 1042–1045 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Honoré, E. et al. Cloning, expression, pharmacology and regulation of a delayed-rectifier K+ channel in mouse heart. EMBO J. 10, 2805–2811 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Attali, B. et al. The protein IsK is a dual activator of K+ and Cl–channels. Nature 365, 850–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Barhanin, J. et al. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384, 78–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Sanguinetti, M.C. et al. Coassembly of KvLQTI and MinK (IsK) proteins to form cardiac IKs potassium change. Nature 384, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Sanguinetti, M.C., Jiang, C., Curran, M.E. & Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Bennett, P.B., Yazawa, K., Makita, N. & George, A.L. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Fraser, G.R., Froggatt, P. & James, T.N. Congenital deafness associated with electrocardiographic abnormalities, fainting attacks and sudden death. Quart. J. Med. 33, 361–385 (1964).

    CAS  PubMed  Google Scholar 

  23. Hudspeth, A.J. How the ear works work. Nature 341, 397–404 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman, E.P., Lehmann-Horn, F. & Rüdel, R. Overexcited or inactive: ion channels in muscle disease. Cell 80, 681–686 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Byers, P.H., Wallis, G.A. & Willing, M.C. Osteogenesis imperfecta: translation of mutation to phenotype. J. Med. Genet. 28, 433–442 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hovnanian, A. et al. Genetic linkage of recessive dystrophic epidermolysis bullosa to the type VII collagen gene. J. Clin. Invest. 90, 1032–1036 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeffery, S., Jamieson, R., Patton, M., Till, J., Long QT and Harvey-ras. Lancet 339, 255 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Pernot, C., Henry, M. & Aigle, J.C. Syndrome cardio-auditif de Jervell et torsades de pointes. Arch Mal. Coeur 65, 261–274 (1972).

    CAS  PubMed  Google Scholar 

  29. Dib, C. et al. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Helbling-Leclerc, A. et al. Mutations in the laminin α2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11, 216–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tisue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochem. 100, 431–440 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Guicheney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neyroud, N., Tesson, F., Denjoy, I. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15, 186–189 (1997). https://doi.org/10.1038/ng0297-186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing