Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders

Abstract

The peroxisome biogenesis disorders (PBDs) are lethal recessive diseases caused by defects in peroxisome assembly. We have isolated PXR1, a human homologue of the yeast P. pastoris PAS8 (peroxisome assembly) gene. PXR1, like PAS8, encodes a receptor for proteins with the type–1 peroxisomal targeting signal (PTS1). Mutations in PXR1 define complementation group 2 of PBDs and expression of PXR1 rescues the PTS1 import defect of fibroblasts from these patients. Based on the observation that PXR1 exists both in the cytosol and in association with peroxisomes, we propose that PXR1 protein recognizes PTS1 –containing proteins in the cytosol and directs them to the peroxisome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van den Bosch, H., Schutgens, R., Wanders, R. & Tager, J. Biochemistry of peroxisomes. A Rev. Biochem. 61, 157–197 (1992).

    Article  CAS  Google Scholar 

  2. Lazarow, P. & Fujiki, Y. Biogenesis of peroxisomes. A. Rev. Cell Biol. 1, 489–530 (1985).

    Article  CAS  Google Scholar 

  3. Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. A Rev. Cell Biol. 9, 445–478 (1993).

    Article  CAS  Google Scholar 

  4. Gould, S. et al. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J. 9, 85–90 (1990).

    Article  CAS  Google Scholar 

  5. Keller, G. et al. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes and glycosomes. J. Cell Biol. 114, 893–904 (1991).

    Article  CAS  Google Scholar 

  6. Altchison, J., Murray, W. & Rachubinski, R. The carboxy-terminal ala-lys-ile is essential for targeting Candida tropicalis trifunctional enzyme to yeast peroxisomes. J. biol. Chem. 266, 23197–23203 (1991).

    Google Scholar 

  7. Miyazawa, S., Osumi, T., Hashimoto, T., Ohno, K., Miura, S. & Fujiki, Y. Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Molec. cell. Biol. 9, 83–91 (1989).

    Article  CAS  Google Scholar 

  8. Gould, S., Keiler, G., Hosken, N., Wilkinson, J. & Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108, 1657–1664 (1989).

    Article  CAS  Google Scholar 

  9. Miura, S. et al. Carboxyl-terminal consensus ser-lys-leu-related tripeptide of peroxisomal proteins in vitro as a minimal peroxisome-targeting signal. J. biol. Chem. 267, 14405–14411 (1992).

    CAS  PubMed  Google Scholar 

  10. Swinkels, B., Gould, S. & Subramani, S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett. 305, 133–136 (1992).

    Article  CAS  Google Scholar 

  11. Hansen, H., Didion, T., Thiemann, A., Veenhuis, M. & Roggenkamp, R. Targeting sequences of the major peroxisomal proteins in the methylotrophic yeast Hansenula poylmorpha. Molec. gen. Genet. 235, 269–278 (1992).

    Article  CAS  Google Scholar 

  12. Koutz, P., Davis, G., Stillman, C., Barringer, K., Gregg, J. & Thill, G. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5, 167–177 (1989).

    Article  CAS  Google Scholar 

  13. Imanaka, T., Small, G. & Lazarow, P. Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105, 2915–2922 (1987).

    Article  CAS  Google Scholar 

  14. Wendland, M. & Subramani, S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120, 675–685 (1993).

    Article  CAS  Google Scholar 

  15. Soto, U., Pepperkok, R., Ansorge, W. & Just, W. Import of firefly luciferase into mammalian peroxisomes in vivo requires nucleptide triphosphates. Exp. Cell Res. 205, 66–75 (1993).

    Article  CAS  Google Scholar 

  16. Walton, P., Wendland, M., Subramani, S., Rachubinski, R. & Welch, W. Involvement of 70 kD heat shock proteins in peroxisomal import. J. Cell Biol. 125, 1037–1046 (1994).

    Article  CAS  Google Scholar 

  17. Swinkels, B., Gould, S., Bodnar, A., Rachubinski, R. & Subramani, S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255–3262 (1991).

    Article  CAS  Google Scholar 

  18. Osumi, T. et al. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. biophys. Res. Comm. 181, 947–954 (1991).

    Article  CAS  Google Scholar 

  19. Glover, J., Andrews, D., Subramani, S. & Rachubinski, R. Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxiosomes in vivo. J. biol. Chem. 269: 7558–7563 (1994).

    CAS  PubMed  Google Scholar 

  20. Gietl, C., Faber, K., van der Kiel, I. & Veenhuis, M. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc. natn. Acad. Sci. U.S.A. 91, 3151–3155 (1994).

    Article  CAS  Google Scholar 

  21. Lazarow, P. & Moser, H. Disorders of peroxisome biogenesis. in The Metabolic Basis of Inherited Disease (eds Beaudet, A. L., Scriver, C.R., Sly, W.S. & Valle, D.) 1479–1509 (McGraw Hill, New York, 1989).

    Google Scholar 

  22. Santos, M., Imanaka, T., Shio, H., Small, G., Lazarow, P. Peroxisomal membrane ghosts in Zellweger syndrome — aberrant organelle assembly. Science 239, 1536–1538 (1988).

    Article  CAS  Google Scholar 

  23. Brul, S. et al. Genetic heterogeneity in the cerebrohepatorcnal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions — a study using complementation analysis. J. clin. Invest. 81, 1710–1715 (1988).

    Article  CAS  Google Scholar 

  24. Roscher, A. et al. Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis. A complementation study involving cell lines from 19 patients. Pediatr. Res. 26, 67–72 (1989).

    Article  CAS  Google Scholar 

  25. Shimozawa, N., Suzuki, Y., Orii, T., Moser, A., Moser, H. & Wanders, R. Standardization of complementation grouping of peroxisome-deficient disorders and the second Zellweger patient with peroxisomal assembly factor-l (PAF-I) defect. Am. J. hum. Genet. 52, 843–844 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimozawa, N. et al. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134 (1992).

    Article  CAS  Google Scholar 

  27. Gould, S., McCollum, D., Spong, A., Heyman, J. & Subramani, S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8, 613–628 (1992).

    Article  CAS  Google Scholar 

  28. Liu, H., Tan, X., Veenhuis, M., McCollum, D. & Gregg, J. An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J. Bacteriol. 174, 4943–4951 (1992).

    Article  CAS  Google Scholar 

  29. Erdmann, R., Veenhuis, D., Mertens, D. & Kunau, W. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 86, 5419–5423 (1989).

    Article  CAS  Google Scholar 

  30. Elgersma, Y., van den Berg, M., Tabak, H. & Distel, B. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics 135, 731–740 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cregg, J., Vankiel, I., Suiter, G., Veenhuis, M. & Harder, W. Peroxisome-deficient mutants of Hansenula polymorpha. Yeast 6, 87–97 (1990).

    Article  CAS  Google Scholar 

  32. Nuttley, W. et al. PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolytica, encodes a novel member of a family of putative ATPases. J. biol. Chem. 269, 556–566 (1994).

    CAS  PubMed  Google Scholar 

  33. McCollum, D., Monosov, E. & Subramani, S., The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells — the Pas8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal and is a member of the TRP protein family. J. Cell Biol. 121, 761–774 (1993).

    Article  CAS  Google Scholar 

  34. Van der Leij, I., franse, M., Elgersma, Y., Distel, B. & Tabak, H. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A 90, 11782–11786 (1993).

    Article  CAS  Google Scholar 

  35. Adams, M., Soares, M., Kerlavage, A., Fields, C. & Venter, J.C. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genet. 4, 373–380 (1993).

    Article  CAS  Google Scholar 

  36. Sikorski, R., Michaud, W. & Hieter, P. p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains. Molec. cell. Biol. 13, 1212–1221 (1993).

    Article  CAS  Google Scholar 

  37. Crane, D. & Gould, S., Pichia pastoris HIS4 gene: nucleotide sequence, creation of a non-reverting his4 deletion mutant, and development of HIS4-based replicating and integrating plasmids. Curr. Genet. 26, 443–450 (1994).

    Article  CAS  Google Scholar 

  38. Slawecki, M., Dodt, G., Moser, A., Moser, H. & Gould, S. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J. Cell Sci. (in the press).

  39. Motley, A., Hettema, E., Distel, B. & Tabak, H. Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell Biol. 125, 755–767 (1994).

    Article  CAS  Google Scholar 

  40. Gärtner, J., Moser, H. & Valle, D. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nature Genet. 1, 16–23 (1992).

    Article  Google Scholar 

  41. Gould, S., Krisans, S., Keller, G. & Subramani, S. Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins. J. Cell Biol. 110, 27–34 (1990).

    Article  CAS  Google Scholar 

  42. Goebl, M. & Yanagida, M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. TIBS 16, 173–177 (1991).

    CAS  PubMed  Google Scholar 

  43. Hirano, T., Kinoshita, N., Morikawa, K. & Yanagida, M. Snap helix with knob and hole: Essential repeats in S. pombe nuclear protein nuc2+. Cell 60, 319–328 (1990).

    Article  CAS  Google Scholar 

  44. Ramage, L., Junne, T., Hahne, K., Lithgow, T. & Schatz, G. Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J 12, 4115–4123 (1993).

    Article  CAS  Google Scholar 

  45. Moczko, M., Ehmann, B., Gärtner, F., Hönlinger, A., Schäfer, E. & Pfanner, N. Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria J. biol. Chem. 289, 9045–9051 (1994).

    Google Scholar 

  46. Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Brutsch, H. & Schatz, G. Protein import into yeast mitochondria is accelerated bythe outer membrane protein MAS70. EMBO J. 9, 3191–3200 (1990).

    Article  CAS  Google Scholar 

  47. Söllner, T., Pfaller, R., Griffiths, G., Pfanner, N. & Neupert, W. Amitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107–115 (1990).

    Article  Google Scholar 

  48. Walter, P. & Blobel, G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91, 557–561 (1981).

    Article  CAS  Google Scholar 

  49. Bellion, E. & Goodman, J. Proton ionophores prevent assembly of a peroxisomal protein. Cell 48, 165–173 (1987).

    Article  CAS  Google Scholar 

  50. Wolff, J. et al. Myopathy in an infant with a fatal peroxisomal disorder. Pediatr. Neurol. 2, 141–146 (1986).

    Article  CAS  Google Scholar 

  51. Didion, T. & Roggenkamp, R. Targeting signal of the peroxisomal catalase in the methylotrophic yeast Hansenula polymorpha. FEBS Lett. 303, 113–116 (1992).

    Article  CAS  Google Scholar 

  52. Moser, H. et al. Elevated C26, fatty acid in cultured skin fibroblasts. Ann. Neurol. 7, 542–549 (1980).

    Article  CAS  Google Scholar 

  53. Crane, D., Kalish, J. & Gould, S., The Pichia pastoris PAS4 gene encodes a ubiquitin-conjugating enzyme required for peroxisome assembly. J. biol. Chem. 269, 21835–21844 (1994).

    CAS  PubMed  Google Scholar 

  54. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  55. Frohman, M., Dush, M. & Martin, G. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene specific oligonucleotide primer. Proc. natn. Acad. Sci. U.S.A 85, 8998–8991 (1988).

    Article  CAS  Google Scholar 

  56. Sanger, F., Nicklin, S. & Coulson, A. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  57. Gärtner, J., Obie, C., Watkins, P. & Valle, D. Restoration of peroxisome biogenesis in a peroxisome-deficient mammalian cell line by expression of either the 35 kDa or the 70 kDa peroxisomal membrane proteins. J. inher. metab. Dis. 17, 327–329 (1994).

    Article  Google Scholar 

  58. Michaud, J. et al. Strand-separating conforrnational polymorphism analysis: Efficacy of detection of point mutations in the human ornithine aminotransferase gene. Genomics 13, 389–394 (1992).

    Article  CAS  Google Scholar 

  59. Gould, S., Keller, G. & Subramani, S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J. Cell Biol. 105, 2923–2931 (1987).

    Article  CAS  Google Scholar 

  60. Watkins, P., Ferrell, E.J., Pedersen, J. & Hoefler, G. Peroxisomal fatty acid β-oxidation in HepG2 cells. Arch. Biochem. Biophys. 289, 329–366 (1991).

    Article  CAS  Google Scholar 

  61. Peters, T., Muller, M. & de Duve, C. Lysosomes of the arterial wall. I. Isolation and subcellular fractionation of cells from normal rat aorta. J. exp. Med. 136, 1179–1139 (1972).

    Article  Google Scholar 

  62. Pennington, R. Biochemistry of dystrophic myscle: mitochondrial succinate-tetrazolium reductase and adenosine triphosphate. Biochem. J. 80, 649–654 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodt, G., Braverman, N., Wong, C. et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9, 115–125 (1995). https://doi.org/10.1038/ng0295-115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0295-115

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing