Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly

Abstract

Schizencephaly1 is an extremely rare human congenital disorder characterized by a full-thickness cleft within the cerebral hemispheres. These clefts are lined with grey matter and most commonly involve the parasylvian regions2. Large portions of the cerebral hemispheres may be absent and replaced by cerebro-spinal fluid. We examined eight severely affected patients, and found three who are heterozygous for different mutations in the EMX2 homeobox gene, the human cognate of murine Emx2 (refs 3,4) that is expressed in proliferating neuroblasts of the developing cerebral cortex. One of these mutations is a frameshift in the homeodomain resulting in the alteration of its carboxy terminus, including the entire recognition helix. The other two are 3′ splice site mutations in the first intron, upstream from the homeodomain, and prevent the appropriate splicing of EMX2 transcripts in vitro. All of these are de novo mutations, as they are not present in the patients' parents. The presence of different mutations in cases of severe schizencephaly suggests a requirement of the EMX2 protein for the correct formation of the human cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolpert,, S.M., Barnes, R.D. MRI in Pediatric Neuroradiology. (Mosby Year Book, St. Louis, 1992).

    Google Scholar 

  2. Barkovich, A.J., Chuang, S.H. & Norman, D. MR of neuronal migration anomalies. Am. J. Neuroradiol. 8, 1009–1017 (1987).

    Google Scholar 

  3. Simeone, A. et al. Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J. 11, 2541–2550 (1992).

    Article  CAS  Google Scholar 

  4. Simeone, A., Acampora, p., Gulisano, M., Stornaiuolo, A. & Boncinelli, E. Nested expression domains of four homoeobox genes in the developing rostral brain. Nature 358, 687–690 (1992).

    Article  CAS  Google Scholar 

  5. Simeone, A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747 (1993).

    Article  CAS  Google Scholar 

  6. Barkovich, A.J. & Norman, D. MR imaging of schizencephaly. Am. J. Radiol. 150, 1391–1396 (1988).

    CAS  Google Scholar 

  7. Barkovich, A.J. & Kjos, B.C. Schizencephaly: correlation of clinical findings with MR characteristics. AJNR. 13, 85–94 (1992).

    CAS  PubMed  Google Scholar 

  8. McKusick, V. OMIM, Online Mendelian Inheritance in Man. The Johns Hopkins School of Medicine (1995).

    Google Scholar 

  9. Boncinelli, E., Gulisano, M., Spada, F. & Broccoli, V. Emx and Otx gene expression in the developing mouse brain. In: Development of the cerebral cortex. Wiley (ed.), Chichester (Ciba Foundation Symposium 193) 100–116 (1995).

    Google Scholar 

  10. Li, X. et al. Effect on splicing of a silent FGFR2 mutation in Crouzon syndrome. Nature Genet. 9, 232–233 (1995).

    Article  Google Scholar 

  11. Richard, I. & Beckmann, J.S. How neutral are synonymous codon mutations? Nature Genet. 10, 259 (1995).

    Article  CAS  Google Scholar 

  12. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  Google Scholar 

  13. Baldwin, C.T., Hoth, C.F., Amos, J.A., da Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  Google Scholar 

  14. Tassabehji, M. et al. Mutations in the PAX3 gene causing Waardenburg's syndrome type 1 and type 2. Nature Genet. 3, 26–30 (1993).

    Article  CAS  Google Scholar 

  15. Tassabehji, M. et al. PAX3 gene structure and mutations: close analogies between Waardenburg's syndrome and the Splotch mouse. Hum. Molec. Genet. 3, 1069–1074 (1994).

    Article  CAS  Google Scholar 

  16. Ton, C.T.T. et al. Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  Google Scholar 

  17. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet. 1, 328–332 (1992).

    Article  CAS  Google Scholar 

  18. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophtalmia and central nervous system defects. Nature Genet. 9, 358–364 (1995).

    Article  Google Scholar 

  19. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nature Genet. 9, 358–364 (1995).

    Article  CAS  Google Scholar 

  20. Zlotogora, J., Lerer, I., Bar-Dawid, S., Ergaz, Z. & Abeliovich, D. Homozygosity for Waardenburg Syndrome. Am. J. Hum. Genet. 56, 1173–1178 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hodgson, S.V. & Saunders, K.E. A probable case of the homozygous condition of the aniridia gene. J. Med. Genet. 17, 478–480 (1980).

    Article  CAS  Google Scholar 

  22. Nigro, V. et al. Detection of a nonsense mutation in the dystrophin gene by multiple SSCP. Hum. Molec. Genet. 1, 517–520 (1992).

    Article  CAS  Google Scholar 

  23. Welsh, J. & McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18, 7213–7218 (1990).

    Article  CAS  Google Scholar 

  24. Green, S., Issemann, I. & Sheer, E. A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucl. Acids Res. 16, 369 (1988).

    Article  CAS  Google Scholar 

  25. Simeone, A. et al. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346, 763–766 (1990).

    Article  CAS  Google Scholar 

  26. Erlich, H.A. PCR Technology. Principles and Application for DNA Amplification. (Stockton Press, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunelli, S., Faiella, A., Capra, V. et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 12, 94–96 (1996). https://doi.org/10.1038/ng0196-94

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing