Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition

Abstract

Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tctn1 is required for ciliogenesis in a tissue-dependent manner.
Figure 2: Tctn1 interacts with ciliopathy proteins.
Figure 3: Tctn1 and its interactors localize to the ciliary transition zone.
Figure 4: Tctn2, like Tctn1, is essential for ciliogenesis in a tissue-dependent manner.
Figure 5: Tctn1 interactors Cc2d2a and Tmem67 promote ciliogenesis.
Figure 6: Tctn1 and its interactors control the localization of select ciliary membrane proteins.
Figure 7: A human TCTN1 mutation is a cause of Joubert syndrome.

Similar content being viewed by others

References

  1. Hodges, M.E., Scheumann, N., Wickstead, B., Langdale, J.A. & Gull, K. Reconstructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123, 1407–1413 (2010).

    Article  CAS  Google Scholar 

  2. Goetz, S.C. & Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  Google Scholar 

  3. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    Article  CAS  Google Scholar 

  4. Nachury, M.V., Seeley, E.S. & Jin, H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87 (2010).

    Article  CAS  Google Scholar 

  5. Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    Article  CAS  Google Scholar 

  6. Williams, C.L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

    Article  CAS  Google Scholar 

  7. Craige, B. et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J. Cell Biol. 190, 927–940 (2010).

    Article  CAS  Google Scholar 

  8. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  Google Scholar 

  9. Tobin, J.L. & Beales, P.L. The nonmotile ciliopathies. Genet. Med. 11, 386–402 (2009).

    Article  CAS  Google Scholar 

  10. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  Google Scholar 

  11. Shaheen, R. et al. A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum. Mutat. 32, 573–578 (2011).

    Article  CAS  Google Scholar 

  12. Leitch, C.C. et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat. Genet. 40, 443–448 (2008).

    Article  CAS  Google Scholar 

  13. Khanna, H. et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739–745 (2009).

    Article  CAS  Google Scholar 

  14. Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell Sci. 119, 1383–1395 (2006).

    Article  CAS  Google Scholar 

  15. Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 28, 183–192 (2009).

    Article  CAS  Google Scholar 

  16. Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  Google Scholar 

  17. Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  Google Scholar 

  18. Berbari, N.F., Lewis, J.S., Bishop, G.A., Askwith, C.C. & Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. USA 105, 4242–4246 (2008).

    Article  CAS  Google Scholar 

  19. Mykytyn, K. et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl. Acad. Sci. USA 101, 8664–8669 (2004).

    Article  CAS  Google Scholar 

  20. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  Google Scholar 

  21. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    Article  CAS  Google Scholar 

  22. Reiter, J.F. & Skarnes, W.C. Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev. 20, 22–27 (2006).

    Article  CAS  Google Scholar 

  23. Caspary, T., Larkins, C.E. & Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  24. Cevik, S. et al. Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J. Cell Biol. 188, 953–969 (2010).

    Article  CAS  Google Scholar 

  25. Weatherbee, S.D., Niswander, L.A. & Anderson, K.V. A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum. Mol. Genet. 18, 4565–4575 (2009).

    Article  CAS  Google Scholar 

  26. Jonassen, J.A., San Agustin, J., Follit, J.A. & Pazour, G.J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377–384 (2008).

    Article  CAS  Google Scholar 

  27. Follit, J.A. et al. Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLoS Genet. 4, e1000315 (2008).

    Article  Google Scholar 

  28. Huangfu, D. & Anderson, K.V. Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330 (2005).

    Article  CAS  Google Scholar 

  29. Liu, A., Wang, B. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  Google Scholar 

  30. Bénazet, J.D. & Zeller, R. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb. Perspect. Biol. 1, a001339 (2009).

    Article  Google Scholar 

  31. Torres, J.Z., Miller, J.J. & Jackson, P.K. High-throughput generation of tagged stable cell lines for proteomic analysis. Proteomics 9, 2888–2891 (2009).

    Article  CAS  Google Scholar 

  32. Hopp, K. et al. B9D1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis. Hum. Mol. Genet. 20, 2524–2534 (2011).

    Article  CAS  Google Scholar 

  33. Won, J. et al. NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20, 482–496 (2011).

    Article  CAS  Google Scholar 

  34. Holopainen, J.M. et al. Interaction and localization of the retinitis pigmentosa protein RP2 and NSF in retinal photoreceptor cells. Biochemistry 49, 7439–7447 (2010).

    Article  CAS  Google Scholar 

  35. Cook, S.A. et al. A mouse model for Meckel syndrome type 3. J. Am. Soc. Nephrol. 20, 753–764 (2009).

    Article  CAS  Google Scholar 

  36. Dawe, H.R. et al. The Meckel-Gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum. Mol. Genet. 16, 173–186 (2007).

    Article  CAS  Google Scholar 

  37. Bishop, G.A., Berbari, N.F., Lewis, J. & Mykytyn, K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J. Comp. Neurol. 505, 562–571 (2007).

    Article  Google Scholar 

  38. Pazour, G.J., San Agustin, J.T., Follit, J.A., Rosenbaum, J.L. & Witman, G.B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in Orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  Google Scholar 

  39. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  40. Hildebrandt, F. et al. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 5, e1000353 (2009).

    Article  Google Scholar 

  41. Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).

    Article  CAS  Google Scholar 

  42. Vierkotten, J., Dildrop, R., Peters, T., Wang, B. & Rüther, U. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134, 2569–2577 (2007).

    Article  CAS  Google Scholar 

  43. Lechtreck, K.F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    Article  CAS  Google Scholar 

  44. Geimer, S. & Melkonian, M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J. Cell Sci. 117, 2663–2674 (2004).

    Article  CAS  Google Scholar 

  45. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: a Laboratory Manual 3rd edn. (Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, USA, 2002).

  46. Kruglyak, L. & Daly, M.J. Linkage thresholds for two-stage genome scans. Am. J. Hum. Genet. 62, 994–997 (1998).

    Article  CAS  Google Scholar 

  47. Strauch, K. et al. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am. J. Hum. Genet. 66, 1945–1957 (2000).

    Article  CAS  Google Scholar 

  48. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–13 (2000).

    Article  CAS  Google Scholar 

  49. Otto, E.A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 42, 840–850 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Institute for Regeneration Medicine and Nikon Imaging Centers at University of California San Francisco. The Servei Central de Suport a la Investigació Experimental and M. Soriano-Navarro assisted with electron microscopy. Members of the Reiter lab provided valuable discussions. K. Anderson, D. Beier, J. Gleeson, C. Johnson, H. Khanna, R. Molday, K. Mykytyn, G. Pazour, S. Scales, J. Sillibourne and S. Somlo provided antibodies or plasmids. T.R.N. is supported by a National Science Foundation predoctoral grant and an National Institute for General Medical Sciences-Initiative for Maximizing Student Diversity grant (R25-GM56847). N.K. is a Distinguished George W. Brumley Professor. F.H. is an investigator of the Howard Hughes Medical Institute, a Doris Duke Distinguished Clinical Scientist and a Frederick G. L. Huetwell Professor. This work was funded by grants from the US National Institutes of Health to N.K. (HD04260, DK072301, DK075972), F.H. (DK1069274, DK1068306, RC4-K090917) and to J.F. Reiter (AR054396), and from the March of Dimes, the Burroughs Wellcome Fund, the Packard Foundation and the Sandler Family Supporting Foundation to J.F. Reiter.

Author information

Authors and Affiliations

Authors

Contributions

F.R.G.-G. and K.C.C. performed most of the experiments and wrote the manuscript. M.S.S.-P. did most of the electron microscopy and was supervised by J.M.G.-V. Human genetics were supervised by F.H. and N.K. and performed by G.R., E.A.O., D.J.J., C.L.B. and J.F. Robinson. T.R.N. performed the gel filtration chromatography. A.D.S. helped with mouse experiments. J.F. Reiter wrote the manuscript and supervised the work.

Corresponding author

Correspondence to Jeremy F Reiter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8. (PDF 4500 kb)

Supplementary Table 1

Tctn1-LAP interactors (XLS 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Gonzalo, F., Corbit, K., Sirerol-Piquer, M. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43, 776–784 (2011). https://doi.org/10.1038/ng.891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing