Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse

Abstract

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing1,2,3. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor α (PDGFRα) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic characterization of Inpp5eΔ/Δ mice.
Figure 2: Primary cilium alterations and Inpp5e localization.
Figure 3: Role of Inpp5e in primary cilium stability.
Figure 4: Studies of human INPP5E.

Similar content being viewed by others

References

  1. Adams, M., Smith, U.M., Logan, C.V. & Johnson, C.A. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J. Med. Genet. 45, 257–267 (2008).

    Article  CAS  Google Scholar 

  2. Christensen, S.T., Pedersen, L.B., Schneider, L. & Satir, P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97–109 (2007).

    Article  CAS  Google Scholar 

  3. Anderson, C.T. et al. Primary cilia: cellular sensors for the skeleton. Anat. Rec. 291, 1074–1078 (2008).

    Article  Google Scholar 

  4. Blero, D., Payrastre, B., Schurmans, S. & Erneux, C.E. Phosphoinositide phosphatases in a network of signaling reactions. Pflugers Arch. 455, 31–44 (2007).

    Article  CAS  Google Scholar 

  5. Astle, M.V., Horan, K.A., Ooms, L.M. & Mitchell, C.A. The inositol polyphosphate 5-phosphatases: traffic controllers, waistline watchers and tumour suppressors? Biochem. Soc. Symp. 74, 161–181 (2007).

    Article  CAS  Google Scholar 

  6. Asano, T., Mochizuki, Y., Matsumoto, K., Takenawa, T. & Endo, T. Pharbin, a novel inositol polyphosphate 5-phosphatase, induces dendritic appearances in fibroblasts. Biochem. Biophys. Res. Commun. 261, 188–195 (1999).

    Article  CAS  Google Scholar 

  7. Kisseleva, M.V., Wilson, M.P. & Majerus, P.W. The isolation and characterization of a cDNA encoding phospholipids specific inositol polyphosphate 5-phosphatase. J. Biol. Chem. 275, 20110–20116 (2000).

    Article  CAS  Google Scholar 

  8. Kong, A.M. et al. Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J. Biol. Chem. 275, 24052–24064 (2000).

    Article  CAS  Google Scholar 

  9. Pan, J., Wang, Q. & Snell, W.J. Cilium-generated signalling and cilia-related disorders. Lab. Invest. 85, 452–463 (2005).

    Article  CAS  Google Scholar 

  10. Singla, V. & Reiter, J.F. The primary cilium as the cell's antenna: signalling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  Google Scholar 

  11. Badano, J.L., Mitsuma, N., Beales, P.L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    Article  CAS  Google Scholar 

  12. Ong, A.C. & Wheatley, D.N. Polycystic kidney disease: the ciliary connection. Lancet 361, 774–776 (2003).

    Article  CAS  Google Scholar 

  13. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  Google Scholar 

  14. Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    Article  CAS  Google Scholar 

  15. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  16. Phillips, C.L. et al. Renal cysts in inv/inv mice resemble infantile nephronophthisis. J. Am. Soc. Nephrol. 15, 1744–1755 (2004).

    Article  Google Scholar 

  17. Hampshire, D.J. et al. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur. J. Hum. Genet. 14, 543–548 (2006).

    Article  CAS  Google Scholar 

  18. Beales, P.L., Warner, A.M., Hitman, G.A., Thakker, R. & Flinter, F.A. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J. Med. Genet. 34, 92–98 (1997).

    Article  CAS  Google Scholar 

  19. De Smedt, F., Boom, A., Pesesse, X., Schiffmann, S.N. & Erneux, C.E. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J. Biol. Chem. 271, 10419–10424 (1996).

    Article  CAS  Google Scholar 

  20. Kisseleva, M.V., Cao, L. & Majerus, P.W. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akp/protein kinase B phosphorylation and leads to apoptotic cell death. J. Biol. Chem. 277, 6266–6272 (2002).

    Article  CAS  Google Scholar 

  21. Santagata, S. et al. G-protein signalling through tubby proteins. Science 292, 2041–2050 (2001).

    Article  CAS  Google Scholar 

  22. Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  Google Scholar 

  23. Lane, K.T. & Beese, L.S. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 47, 681–699 (2006).

    Article  CAS  Google Scholar 

  24. Zhang, P., Li, M.Z. & Elledge, S.J. Towards genetic genome projects: genomic library screening and gene-targeting vector construction in a single step. Nat. Genet. 30, 31–39 (2002).

    Article  Google Scholar 

  25. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  26. Vandeput, F., Backers, K., Villeret, V., Pesesse, X. & Erneux, C. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity. Cell. Signal. 18, 2193–2199 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Erneux, C. Moreau, F. Fontaine and L. Cuvelier for discussions and technical help, S.J. Elledge for the recombineering reagents, A. de Kerchove d'Exaerde for help with the design of the oligonucleotide probes, A. Nagy for the R1 ES cells, A.P. McMahon for the CAGG-Cre-ERTM mice and E. Golemis for hTERT-RPE1 cells. This work was supported by the Fonds de la Recherche Scientifique-FNRS (FRS-FNRS; to S.G. and S.S.), the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA; to M.J., M.B. and E.P.), the Fonds de la Recherche Scientifique Médicale (FRSM; to S.S. and S.N.S.), the Fondation Rose et Jean Hoguet (to E.P.), Action de Recherches Concertée de la Communauté Française de Belgique (to S.N.S., S.S. and M.B.), The Queen Elisabeth Medical Fundation (to S.N.S.), the Fonds David et Alice Van Buuren (to M.J.), the Royal Society and Cancer Research UK (to F.G.), the American Heart Association (0730350N; to M.V.K.), the US National Institutes of Health (HL16634; to M.V.K.) and the Wellcome Trust (to J.J.C. and C.G.W).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiments; M.J., J.J.C., S.G., D.J.H., M.B., E.P., P.C. and D.P.-M. performed experiments; all authors analyzed data; M.J., M.A., M.V.K., F.G., J.H.R. and C.G.W. provided essential reagents and/or biological samples; all authors discussed the results; and S.S. wrote the manuscript with J.J.C. and C.G.W.'s help with the first draft.

Corresponding authors

Correspondence to Serge N Schiffmann or C Geoffrey Woods.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 1524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, M., Cox, J., Gayral, S. et al. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41, 1027–1031 (2009). https://doi.org/10.1038/ng.427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing