Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor

Abstract

We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic landscape of FHWT.
Figure 2: 11p15 ICR1 and ICR2 methylation and select miRNA expression patterns.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gadd, S. et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children's Oncology Group Study. Neoplasia 14, 742–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torrezan, G.T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Wegert, J. et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Beckwith, J.B. & Palmer, N.F. Histopathology and prognosis of Wilms tumors: results from the First National Wilms' Tumor Study. Cancer 41, 1937–1948 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Walz, A.L. et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perlman, E.J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Ooms, A.H.A.G. et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children's Oncology Group. Clin. Cancer Res. 22, 5582–5591 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Maschietto, M. et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia. PLoS One 9, e109924 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Maiti, S., Alam, R., Amos, C.I. & Huff, V. Frequent association of β-catenin and WT1 mutations in Wilms tumors. Cancer Res. 60, 6288–6292 (2000).

    CAS  PubMed  Google Scholar 

  12. Wu, M.K. et al. Biallelic DICER1 mutations occur in Wilms tumours. J. Pathol. 230, 154–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Palculict, T.B. et al. Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour. J. Med. Genet. 53, 385–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Foulkes, W.D. et al. Extending the phenotypes associated with DICER1 mutations. Hum. Mutat. 32, 1381–1384 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Hill, D.A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heravi-Moussavi, A. et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 366, 234–242 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Passon, D.M. et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc. Natl. Acad. Sci. USA 109, 4846–4850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gratias, E.J. et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children's Oncology Group. J. Clin. Oncol. 34, 3189–3194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chagtai, T. et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: a SIOP Renal Tumours Biology Consortium study. J. Clin. Oncol. 34, 3195–3203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Williams, R.D. et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6, 7232–7243 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Kort, E.J. et al. The E2F3–Oncomir-1 axis is activated in Wilms' tumor. Cancer Res. 68, 4034–4038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai, W.Y. et al. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J. Cell Sci. 126, 2877–2889 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Tsialikas, J. & Romer-Seibert, J. LIN28: roles and regulation in development and beyond. Development 142, 2397–2404 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Maschietto, M. et al. The IGF signalling pathway in Wilms tumours—a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget 5, 8014–8026 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tehler, D., Høyland-Kroghsbo, N.M. & Lund, A.H. The miR-10 microRNA precursor family. RNA Biol. 8, 728–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mechtler, P. et al. The evidence for a microRNA product of human DROSHA gene. RNA Biol. http://dx.doi.org/10.1080/15476286.2017.1342934 (2017).

  27. Johanson, T.M., Lew, A.M. & Chong, M.M. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol. 3, 130144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee, D., Nam, J.W. & Shin, C. DROSHA targets its own transcript to modulate alternative splicing. RNA 23, 1035–1047 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, J., Liu, H., Park, J.S., Lan, Y. & Jiang, R. Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development 141, 1442–1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adli, M., Parlak, M., Li, Y. & El-Dahr, S.S. Epigenetic states of nephron progenitors and epithelial differentiation. J. Cell Biochem. 116, 893–902 (2015).

    Article  CAS  Google Scholar 

  32. Dutta, R., Tiu, B. & Sakamoto, K.M. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol. Genet. Metab. 119, 37–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Essafi, A. et al. A Wt1-controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression. Dev. Cell 21, 559–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao, Y. et al. Reversible histone acetylation involved in transcriptional regulation of WT1 gene. Acta Biochim. Biophys. Sin. (Shanghai) 39, 931–938 (2007).

    Article  CAS  Google Scholar 

  35. Dekel, B. et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res. 66, 6040–6049 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Harari-Steinberg, O. et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol. Med. 5, 1556–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pode-Shakked, N. et al. Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci. Rep. 6, 23562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Self, M. et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 25, 5214–5228 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mugrauer, G., Alt, F.W. & Ekblom, P. N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J. Cell Biol. 107, 1325–1335 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Laurenti, E., Wilson, A. & Trumpp, A. Myc's other life: stem cells and beyond. Curr. Opin. Cell Biol. 21, 844–854 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, J. et al. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev. Cell 31, 434–447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grandori, C., Cowley, S.M., James, L.P. & Eisenman, R.N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, P.Y. et al. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J. Natl. Cancer Inst. 106, dju113 (2014).

    PubMed  Google Scholar 

  44. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Viswanathan, S.R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 41, 843–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, N. et al. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc. Natl. Acad. Sci. USA 108, E636–E645 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abell, A.N. et al. MAP3K4/CBP-regulated H2B acetylation controls epithelial–mesenchymal transition in trophoblast stem cells. Cell Stem Cell 8, 525–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaeser, M.D., Aslanian, A., Dong, M.Q., Yates, J.R. III & Emerson, B.M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, H. et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem. Biophys. Res. Commun. 358, 435–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Srinivasan, R.S., de Erkenez, A.C. & Hemenway, C.S. The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene 22, 3395–3406 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Fan, Z. et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat. Cell Biol. 11, 1002–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park, J.S., Valerius, M.T. & McMahon, A.P. Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development 134, 2533–2539 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt-Ott, K.M. et al. β-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 134, 3177–3190 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Major, M.B. et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Williams, R.D. et al. Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms' tumor. Clin. Cancer Res. 16, 2036–2045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beckwith, J.B., Zuppan, C.E., Browning, N.G., Moksness, J. & Breslow, N.E. Histological analysis of aggressiveness and responsiveness in Wilms' tumor. Med. Pediatr. Oncol. 27, 422–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Rayner, T.F. et al. A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinformatics 7, 489 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Bainbridge, M.N. et al. De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring–Opitz syndrome. Genome Med. 5, 11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lupski, J.R. et al. Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot–Marie–Tooth neuropathy. Genome Med. 5, 57–70 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Edmonson, M.N. et al. Bambino: a variant detector and alignment viewer for next-generation sequencing data in the SAM/BAM format. Bioinformatics 27, 865–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. 32, 894–899 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz, J.M., Cooper, D.N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R. & Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS One 7, e46688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chun, H.J. et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29, 394–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  Google Scholar 

  73. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunskill, E.W. et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev. Cell 15, 781–791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brunet, J.P., Tamayo, P., Golub, T.R. & Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 101, 4164–4169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gooskens, S.L. et al. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget 6, 15828–15841 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Clinical Applications of Core Technology Laboratory of the Hartwell Center for Bioinformatics and Biotechnology of St. Jude Children's Research Hospital for performing the copy number analysis, and the Northwestern University Genomic Core facility for performing the methylation analysis. The authors are grateful for the expertise of K. Novik, L. Monovich, P. Beezhold, D. Kersey, D. Turner, M. McNulty, and Y. Moyer. This work would not be possible without the dedication of the experts within the many clinical disciplines at local institutions and within the Children's Oncology Group and National Wilms Tumor Study Group, the patients, and their families. The TARGET initiative is supported by US National Cancer Institute (NCI) grant U10 CA98543. Work performed under contracts from the NCI within HHSN261200800001E includes specimen processing (the COG Biopathology Center), WGS (CGI, Inc.), whole-exome sequencing (Baylor College of Medicine), miRNA-seq, RNA-seq, and target capture sequencing (BCCA Genome Sciences Center). Financial support was provided by TARGET U10 CA98543 contract HHSN261200800001E and National Institutes of Health (NIH) grants U10CA180886, NIH U10CA180899, NIH U10CA098413, and NIH U10CA42326 (E.J.P.); U10CA98543 (J.S.D., E.J.P.); U24 CA114766 and UO1CA88131 (E.J.P.), and NCI T32 CA079447 (A.L.W., A.E.A.). This work is also supported by the American and Lebanese Syrian Associated Charities of St. Jude (J.M., C.G.M.), the King Abdullah University of Science and Technology (S.T.A.), and the Dutch Cancer Society (A.H.A.G.O.). The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

D.S.G., J.M.G.A., M.A.S., P.G., L.C.H., and T.D. oversaw the administrative and data management aspects of the TARGET project. D.M., C.H.H., C.N., C.Y., Q.-R.C., and Y.H. performed the bioinformatic analysis. S.T.A. performed the in silico protein structure analysis. J.M.G.-F. and N.R. performed the specimen processing and quality control. J.S.D. and V.H. provided the samples and clinical data. C.G.M. and J.M. performed the copy number analysis through level 1. S.G. performed the level 4 analyses of all platforms and wrote the paper with contributions from all other authors. A.L.W. performed the miRNA analysis. A.E.A. performed the level 3 and 4 copy number analysis. A.H.A.G.O. performed the TP53 analysis. Y.M., Z.Z., A.J.M., R.A.M., and M.A.M. performed the target capture sequencing and mRNA sequencing. D.A.W. and O.A.H. performed the whole-exome sequencing. E.J.P. designed and oversaw all aspects of the study.

Corresponding author

Correspondence to Elizabeth J Perlman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1400 kb)

Life Sciences Reporting Summary (PDF 130 kb)

Supplementary Table 1

Discovery set verified COSMIC mutations, nonsense, and frameshift mutations and verified somatic missense and in-frame variants predicted to be damaging and not identified in 1000 Genomes series 3. (XLSX 212 kb)

Supplementary Table 2

Verified high-quality somatic structural variants identified in 80 samples anaylzed by whole-genome sequencing. (XLSX 24 kb)

Supplementary Table 3

Details of variants detected by target capture sequencing and predicted to be damaging within the validation set. (XLSX 241 kb)

Supplementary Table 4

Distribution by histology and concurrent mutations identified in validation set. (XLSX 14 kb)

Supplementary Table 5

Segmental DNA copy changes (>8 probes with segment log2 mean below –0.5 or above 0.5). (XLSX 1403 kb)

Supplementary Table 6

GSEA Hallmark and positional gene sets significantly enriched (FDR < 20%, and P < 5% in each NMF gene expression cluster). (XLSX 12 kb)

Supplementary Table 7

Genes with >5 localized, coordinately differentially methylated probes (q < 0.05 and FC either >1.5 or <0.5). (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadd, S., Huff, V., Walz, A. et al. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 49, 1487–1494 (2017). https://doi.org/10.1038/ng.3940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3940

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer