Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The ZP domain is a conserved module for polymerization of extracellular proteins

Abstract

Many eukaryotic extracellular proteins share a sequence of unknown function, called the zona pellucida (ZP) domain1. Among these proteins are the mammalian sperm receptors ZP2 and ZP3, non-mammalian egg coat proteins, Tamm-Horsfall protein (THP), glycoprotein-2 (GP-2), α- and β-tectorins, transforming growth factor (TGF)-β receptor III and endoglin, DMBT-1 (deletd in malignant brain tumour-1), NompA (no-mechanoreceptor-potential-A), Dumpy and cuticlin-1 (refs 1,2). Here, we report that the ZP domain of ZP2, ZP3 and THP is responsible for polymerization of these proteins into filaments of similar supramolecular structure. Most ZP domain proteins are synthesized as precursors with carboxy-terminal transmembrane domains or glycosyl phosphatidylinositol (GPI) anchors1,2. Our results demonstrate that the C-terminal transmembrane domain and short cytoplasmic tail of ZP2 and ZP3 are not required for secretion, but are essential for assembly. Finally, we suggest a molecular basis for dominant human hearing disorders caused by point mutations within the ZP domain of α-tectorin3,4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence features and predicted domain structure of ZP2, ZP3 and THP.
Figure 2: The ZP domains of ZP2 and ZP3 are essential for their assembly.
Figure 3: Filaments of THP-ZPD and mouse ZP share a similar supramolecular structure.
Figure 4: Mutations affecting assembly and secretion of ZP domain proteins.

Similar content being viewed by others

References

  1. Bork, P. & Sander, C. FEBS Lett. 300, 237–240 (1992).

    Article  CAS  Google Scholar 

  2. Wassarman, P. M., Jovine, L. & Litscher, E. S. Nature Cell Biol. 3, E59–E64 (2001).

    Article  CAS  Google Scholar 

  3. Moreno-Pelayo, M. A. et al. J. Med. Genet. 38, E13–E16 (2001).

    Article  CAS  Google Scholar 

  4. Verhoeven, K. et al. Nature Genet. 19, 60–62 (1998).

    Article  CAS  Google Scholar 

  5. Kirschhofer, K. et al. Cytogenet. Cell Genet. 82, 126–130 (1998).

    Article  CAS  Google Scholar 

  6. Wassarman, P. M. Annu. Rev. Biochem. 57, 415–442 (1988).

    Article  CAS  Google Scholar 

  7. Wassarman, P. M. & Mortillo, S. Int. Rev. Cytol. 130, 85–110 (1991).

    Article  CAS  Google Scholar 

  8. Tsubamoto, H. et al. Biol. Reprod. 61, 1649–1654 (1999).

    Article  CAS  Google Scholar 

  9. Qi, H., Williams, Z. & Wassarman, P. M. Mol. Biol. Cell 13, 530–541 (2002).

    Article  CAS  Google Scholar 

  10. Ponting, C. P., Schultz, J., Milpetz, F. & Bork, P. Nucleic Acids Res. 27, 229–232 (1999).

    Article  CAS  Google Scholar 

  11. Tamm, I. & Horsfall, F. L. Jr. Proc. Soc. Exp. Biol. Med. 74, 108–114 (1950).

    Article  CAS  Google Scholar 

  12. Kokot, F. & Dulawa, J. Nephron 85, 97–102 (2000).

    Article  CAS  Google Scholar 

  13. Maxfield, M. & Davis, M. S. Ann. NY Acad. Sci. 106, 288–297 (1963).

    Article  CAS  Google Scholar 

  14. Easton, R. L., Patankar, M. S., Clark, G. F., Morris, H. R. & Dell, A. J. Biol. Chem. 275, 21928–21938 (2000).

    Article  CAS  Google Scholar 

  15. Bayer, M. E. J. Cell Biol. 21, 265–274 (1964).

    Article  CAS  Google Scholar 

  16. Sawada, H. et al. Proc. Natl Acad. Sci. USA 99, 1223–1228 (2002).

    Article  CAS  Google Scholar 

  17. Litscher, E. S., Qi, H. & Wassarman, P. M. Biochemistry 38, 12280–12287 (1999).

    Article  CAS  Google Scholar 

  18. Cavallone, D., Malagolini, N. & Serafini-Cessi, F. Biochem. Biophys. Res. Commun. 280, 110–114 (2001).

    Article  CAS  Google Scholar 

  19. Killick, R., Legan, P. K., Malenczak, C. & Richardson, G. P. J. Cell Biol. 129, 535–547 (1995).

    Article  CAS  Google Scholar 

  20. Harris, J., Seid, C., Fontenot, G. & Liu, H. Protein Expr. Purif. 16, 298–307 (1999).

    Article  CAS  Google Scholar 

  21. Harrison, P. T. Mol. Membr. Biol. 13, 67–79 (1996).

    Article  CAS  Google Scholar 

  22. Sugiyama, H., Murata, K., Iuchi, I., Nomura, K. & Yamagami, K. J. Biochem. (Tokyo) 125, 469–475 (1999).

    Article  CAS  Google Scholar 

  23. Hyllner, S. J., Westerlund, L., Olsson, P. E. & Schopen, A. Biol. Reprod. 64, 805–811 (2001).

    Article  CAS  Google Scholar 

  24. Steel, K. P. & Kros, C. J. Nature Genet. 27, 143–149 (2001).

    Article  CAS  Google Scholar 

  25. Legan, P. K., Rau, A., Keen, J. N. & Richardson, G. P. J. Biol. Chem. 272, 8791–8801 (1997).

    Article  CAS  Google Scholar 

  26. Legan, P. K. et al. Neuron 28, 273–285 (2000).

    Article  CAS  Google Scholar 

  27. Knipper, M. et al. J. Biol. Chem. 276, 39046–39052 (2001).

    Article  CAS  Google Scholar 

  28. Serafini-Cessi, F., Bellabarba, G., Malagolini, N. & Dall'Olio, F. J. Immunol. Methods 120, 185–189 (1989).

    Article  CAS  Google Scholar 

  29. Karp, D. R., Atkinson, J. P. & Shreffler, D. C. J. Biol. Chem. 257, 7330–7335 (1982).

    CAS  Google Scholar 

  30. Heuser, J. J. Electron Microsc. Tech. 13, 244–263 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Serafini-Cessi for advice on THP purification, W.G.M. Janssen for help with EM analysis of THP and J.E. Heuser for imaging of mouse ZP filaments. We are also grateful to R. De Santis for communicating results before publication and to F. Cotelli, M. Paterlini and V. Gusarova for discussion. Confocal laser scanning microscopy was performed at the MSSM-Microscopy Shared Resource Facility; the N-terminal sequence of THP-ZPD was determined at the HHMI/Columbia University Protein Chemistry Core Facility. L.J. is supported by a Human Frontier Science Program long-term fellowship. This research was supported in part by National Institutes of Health grant HD35105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Wassarman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovine, L., Qi, H., Williams, Z. et al. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 4, 457–461 (2002). https://doi.org/10.1038/ncb802

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing