Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC

Abstract

Phosphorylation on a serine or threonine residue preceding proline (Ser/Thr-Pro) is a key regulatory mechanism, and the conformation of certain phosphorylated Ser/Thr-Pro bonds is regulated specifically by the prolyl isomerase Pin1. Whereas the inhibition of Pin1 induces apoptosis, Pin1 is strikingly overexpressed in a subset of human tumours. Here we show that Pin1 regulates β-catenin turnover and subcellular localization by interfering with its interaction with adenomatous polyposis coli protein (APC). A differential-display screen reveals that Pin1 increases the transcription of several β-catenin target genes, including those encoding cyclin D1 and c-Myc. Manipulation of Pin1 levels affects the stability of β-catenin in vitro. Furthermore, β-catenin levels are decreased in Pin1-deficient mice but are increased and correlated with Pin1 overexpression in human breast cancer. Pin1 directly binds a phosphorylated Ser-Pro motif next to the APC-binding site in β-catenin, inhibits its interaction with APC and increases its translocation into the nucleus. Thus, Pin1 is a novel regulator of β-catenin signalling and its overexpression might contribute to the upregulation of β-catenin in tumours such as breast cancer, in which APC or β-catenin mutations are not common.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of genes downstream of those encoding β-catenin/TCF by overexpression of Pin1.
Figure 2: Pin1 transactivates genes downstream of those encoding β-catenin/TCF through TCF sites.
Figure 3: Pin1 stabilizes cellular β-catenin.
Figure 4: β-Catenin levels are decreased in Pin1-deficient mice but increased in breast-cancer samples overexpressing Pin1.
Figure 5: Pin1 binds β-catenin phosphorylated on the Ser 246-Pro motif in the middle of the Armadillo repeat domain.
Figure 6: Pin1 selectively inhibits the interaction between β-catenin and APC.
Figure 7: Pin1 induces nuclear translocation of β-catenin.
Figure 8: Correlation between Pin1 overexpression and β-catenin localization in human breast-cancer tissues.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  3. Morin, P. J. β-Catenin signaling and cancer. BioEssays 21, 1021–1030 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Su, L. K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Rubinfeld, B. et al. Association of the APC gene product with β-catenin. Science 262, 1731–1734 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S. & Polakis, P. Loss of β-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 57, 4624–4630 (1997).

    CAS  PubMed  Google Scholar 

  10. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Gradl, D., Kuhl, M. & Wedlich, D. The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol. Cell. Biol. 19, 5576–5587 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rubinfeld, B. et al. Binding of GSK3β to the APC–β-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, X. et al. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Henderson, B. R. Nuclear–cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol. 2, 653–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Neufeld, K. L., Zhang, F., Cullen, B. R. & White, R. L. APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep. 1, 519–523 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Jonsson, M., Borg, A., Nilbert, M. & Andersson, T. Involvement of adenomatous polyposis coli (APC)/β-catenin signalling in human breast cancer. Eur. J. Cancer 36, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, S. Y. et al. β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl Acad. Sci. USA 97, 4262–4266 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schlosshauer, P. W. et al. APC truncation and increased β-catenin levels in a human breast cancer cell line. Carcinogenesis 21, 1453–1456 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science 285, 1923–1926 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, X. Z., Lu, P. J., Wulf, G. & Lu, K. P. Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism. Cell. Mol. Life Sci. 56, 788–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Rippmann, J. F. et al. Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis. Cell Growth Differ. 11, 409–416 (2000).

    CAS  PubMed  Google Scholar 

  37. Kondoh, N. et al. A method to isolate differentially expressed genes by displaying specific inner portion of cDNA fragments. Anal. Biochem. 269, 427–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Ryo, A. et al. Identification and characterization of differentially expressed mRNAs in HIV type 1-infected human T cells. AIDS Res. Hum. Retrovir. 16, 995–1005 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Graham, T. A. et al. Crystal structure of a β-catenin/Tcf complex. Cell 103, 885–896 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. von Kries, J. P. et al. Hot spots in β-catenin for interactions with LEF-1, conductin and APC. Nature Struct. Biol. 7, 800–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Neufeld, K. L. et al. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc. Natl Acad. Sci. USA 97, 12085–12090 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Espada, J. et al. H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of β-catenin in epidermal keratinocytes. J. Cell Biol. 146, 967–980 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Playford, M. P., Bicknell, D., Bodmer, W. F. & Macaulay, V. M. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of β-catenin. Proc. Natl Acad. Sci. USA 97, 12103–12108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giannini, A. L., Vivanco, M. M. & Kypta, R. M. Analysis of β-catenin aggregation and localization using GFP fusion proteins: nuclear import of α-catenin by the β-catenin/Tcf complex. Exp. Cell Res. 255, 207–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, K., Pang, K. M., Evans, M. & Hay, E. D. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell 11, 3509–3523 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141, 1433–1448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, K. P. & Hunter, T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81, 413–424 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Nakamura, M., Zhou, X. Z. & Lu, K. P. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr. Biol. 11, 1062–1067 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Yamamoto for providing reagents for the initial differential display screen; X. He for discussions; T. Hunter for Pin1 knockout mice; I. Kosugi for technical instructions; B. Vogelstein, X. He, R. Pestell and S. Hatakeyama for reagents; and X. Zhou, O. Kops and P. J. Lu in the Lu laboratory for their important contributions. A.R., G.W., Y.-C.L. and N.M. are fellows of the Japan Society for the Promotion of Science, the DOD Breast Cancer Research Program, the National Sciences and Engineering Research Council of Canada and the Human Frontier Research Program, respectively. K.P.L. is a Pew Scholar and a Leukemia and Lymphoma Society Scholar. This study was supported the NIH grants to K.P.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Ping Lu.

Supplementary information

Figure S1

β-Catenin structure and its binding sites for APC and Pin1. (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryo, A., Nakamura, M., Wulf, G. et al. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat Cell Biol 3, 793–801 (2001). https://doi.org/10.1038/ncb0901-793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing