Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases

Abstract

We describe the use of zinc-finger nucleases (ZFNs) for somatic and germline disruption of genes in zebrafish (Danio rerio), in which targeted mutagenesis was previously intractable. ZFNs induce a targeted double-strand break in the genome that is repaired to generate small insertions and deletions. We designed ZFNs targeting the zebrafish golden and no tail/Brachyury (ntl) genes and developed a budding yeast–based assay to identify the most active ZFNs for use in vivo. Injection of ZFN-encoding mRNA into one-cell embryos yielded a high percentage of animals carrying distinct mutations at the ZFN-specified position and exhibiting expected loss-of-function phenotypes. Over half the ZFN mRNA-injected founder animals transmitted disrupted ntl alleles at frequencies averaging 20%. The frequency and precision of gene-disruption events observed suggest that this approach should be applicable to any loci in zebrafish or in other organisms that allow mRNA delivery into the fertilized egg.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast-based system for identification of maximally active ZFNs.
Figure 2: Injection of gol ZFN-encoding mRNA into zebrafish embryos induces targeted loss-of-function mutations in somatic cells.
Figure 3: Injection of ntl ZFN-encoding mRNA into zebrafish embryos induces targeted loss-of-function mutations in somatic cells.
Figure 4: Injection of ntl ZFN-encoding mRNA in wild-type embryos creates novel ntl mutations that are transmitted through the germ line.

Similar content being viewed by others

References

  1. Lieschke, G.J. & Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Stemple, D.L. TILLING–a high-throughput harvest for functional genomics. Nat. Rev. Genet. 5, 145–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Sedivy, J.M. & Joyner, A.L. Gene Targeting. (Oxford University Press, Oxford, 1992).

    Google Scholar 

  6. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, J., Berg, J. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Morton, J., Davis, M.W., Jorgensen, E.M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA 103, 16370–16375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santiago, Y. et al. Targeted gene knockout in mammalian cells using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 105, 5809–5814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lamason, R.L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Streisinger, G., Coale, F., Taggart, C., Walker, C. & Grunwald, D.J. Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev. Biol. 131, 60–69 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Haber, J.E. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17, 609–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Halpern, M.E., Ho, R.K., Walker, C. & Kimmel, C.B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, J., McLachlan, A.D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zi268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Choo, Y., Sanchez-Garcia, I. & Klug, A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642–645 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, L. et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. J. Biol. Chem. 275, 33850–33860 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Voth, W.P., Richards, J.D., Shaw, J.M. & Stillman, D.J. Yeast vectors for integration at the HO locus. Nucleic Acids Res. 29, E59 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mumberg, D., Muller, R. & Funk, M. Regulatable promoters of Saccharomyces cerevisiae: a comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haber, J.E. Uses and abuses of HO endonuclease. Methods Enzymol. 350, 141–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Q. et al. A yeast two-hybrid technology-based system for the discovery of PPARgamma agonist and antagonist. Anal. Biochem. 335, 253–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Schulte-Merker, S., van Eeden, F.J., Halpern, M.E., Kimmel, C.B. & Nüsslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  29. Jowett, T. Analysis of protein and gene expression. Methods Cell Biol. 59, 63–85 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jasper Rine, Michael Holmes, Jacques Côté and Amine Nourani for helpful suggestions regarding yeast-based screening of ZFNs, Randy Morse and Amine Nourani for providing reagents, Keith Cheng for gol cDNA, Keith Cheng and Herwig Baier for gol stocks, and Jennifer St. Hilaire, Emily Janus and Kimberly Blum for excellent zebrafish care and technical support. We thank the anonymous referees for helpful suggestions on the manuscript. The ntlb487 allele was isolated in Eugene, Oregon, in a National Institutes of Health (NIH)-funded screen (HD22486); S.L.A. gratefully acknowledges Charles Kimmel and our many colleagues at the University of Oregon who participated in mutagenesis screening. This work was supported by grants to S.L.A. from the NIH (1-R01-GM061952) and March of Dimes Birth Defects Foundation (1FY05-118). J.M.M. is supported by a National Science Foundation Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

F.D.U. and S.L.A. conceived the project; Y.D., J.M.M., J.C.M., L.Z., E.J.R., F.D.U. and S.L.A. designed experiments; Y.D., J.M.M., F.F., C.N., G.E.K., R.A., T.D.H. and S.L.A. performed experiments; Y.D., J.M.M., P.D.G., F.D.U. and S.L.A. wrote the manuscript.

Corresponding author

Correspondence to Sharon L Amacher.

Ethics declarations

Competing interests

All of the authors, except J.M.M. and S.L.A., are full-time employees of Sangamo BioSciences, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Tables 1–4, Figures 1–11 (PDF 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyon, Y., McCammon, J., Miller, J. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26, 702–708 (2008). https://doi.org/10.1038/nbt1409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing