Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS

Abstract

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27–33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43–ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pbp1 is a dose-sensitive modifier of TDP-43 toxicity in yeast.
Figure 2: Atx2 is a dose-sensitive modifier of TDP-43 toxicity in Drosophila.
Figure 3: ATXN2 and TDP-43 interact in a manner dependent on RNA.
Figure 4: ATXN2 localization is perturbed in ALS patient neurons.
Figure 5: Intermediate-length ATXN2 polyQ expansions linked to ALS.

Similar content being viewed by others

References

  1. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci. 2, 806–819 (2001)

    Article  CAS  Google Scholar 

  2. Valentine, J. S. & Hart, P. J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 100, 3617–3622 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Pesiridis, G. S., Lee, V. M. & Trojanowski, J. Q. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, R156–R162 (2009)

    Article  CAS  Google Scholar 

  5. Lagier-Tourenne, C. & Cleveland, D. W. Rethinking ALS: the FUS about TDP-43. Cell 136, 1001–1004 (2009)

    Article  CAS  Google Scholar 

  6. Winton, M. J. et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302–13309 (2008)

    Article  CAS  Google Scholar 

  7. Cooper, A. A. et al. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324–328 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Gitler, A. D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genet. 41, 308–315 (2009)

    Article  CAS  Google Scholar 

  9. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007)

    Article  CAS  Google Scholar 

  10. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285–291 (1996)

    Article  CAS  Google Scholar 

  11. Lorenzetti, D., Bohlega, S. & Zoghbi, H. Y. The expansion of the CAG repeat in ataxin-2 is a frequent cause of autosomal dominant spinocerebellar ataxia. Neurology 49, 1009–1013 (1997)

    Article  CAS  Google Scholar 

  12. Pulst, S. M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996)

    Article  CAS  Google Scholar 

  13. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996)

    Article  CAS  Google Scholar 

  14. Infante, J. et al. Spinocerebellar ataxia type 2 with levodopa-responsive parkinsonism culminating in motor neuron disease. Mov. Disord. 19, 848–852 (2004)

    Article  Google Scholar 

  15. Nanetti, L. et al. Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J. Neurol. 256, 1926–1928 (2009)

    Article  Google Scholar 

  16. Mangus, D. A., Amrani, N. & Jacobson, A. Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol. Cell. Biol. 18, 7383–7396 (1998)

    Article  CAS  Google Scholar 

  17. Buchan, J. R., Muhlrad, D. & Parker, R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183, 441–455 (2008)

    Article  CAS  Google Scholar 

  18. Al-Ramahi, I. et al. dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet. 3, e234 (2007)

    Article  Google Scholar 

  19. Lessing, D. & Bonini, N. M. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila. PLoS Biol. 6, e29 (2008)

    Article  Google Scholar 

  20. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M. & Bonini, N. M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295, 865–868 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 23, 425–428 (1999)

    Article  CAS  Google Scholar 

  22. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009)

    Article  CAS  Google Scholar 

  23. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001)

    Article  CAS  Google Scholar 

  24. Huynh, D. P., Yang, H. T., Vakharia, H., Nguyen, D. & Pulst, S. M. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum. Mol. Genet. 12, 1485–1496 (2003)

    Article  CAS  Google Scholar 

  25. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004)

    Article  CAS  Google Scholar 

  26. Colombrita, C. et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J. Neurochem. 111, 1051–1061 (2009)

    Article  CAS  Google Scholar 

  27. Nonhoff, U. et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell 18, 1385–1396 (2007)

    Article  CAS  Google Scholar 

  28. Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010)

    Article  CAS  Google Scholar 

  29. Jackson, M., Llado, J. & Rothstein, J. D. Therapeutic developments in the treatment of amyotrophic lateral sclerosis. Expert Opin. Investig. Drugs 11, 1343–1364 (2002)

    Article  CAS  Google Scholar 

  30. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl Acad. Sci. USA 97, 1589–1594 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Johnson, B. S., McCaffery, J. M., Lindquist, S. & Gitler, A. D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 105, 6439–6444 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Li, L. B., Yu, Z., Teng, X. & Bonini, N. M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453, 1107–1111 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Pilot grant from the University of Pennsylvania Institute on Aging (A.D.G.), an NIH Director’s New Innovator Award 1DP2OD004417-01 (A.D.G.), 1R01NS065317-01 (A.D.G.), P01 AG-09215 (N.M.B.), AG-10124 (J.Q.T., V.M.V.D.) and AG-17586, (V.M.-Y.L., V.M.V.D.). A.D.G. is a Pew Scholar in the Biomedical Sciences, supported by The Pew Charitable Trusts. A.S.C.-P. is supported by a Burroughs Wellcome Fund Career Award and NIH K08 AG-033101-01. N.M.B. is an Investigator of the Howard Hughes Medical Institute. U.R. has support from the Deutsche Heredo-Ataxie Gesellschaft (DHAG) and Autosomal Dominant Cerebellar Ataxia (ADCA) Vereniging Nederland, G.A. from the European Integrated Project on Spinocerebellar Ataxias (EuroSCA) and the Deutsche Forschungsgemeinschaft (DFG) (AU96/11-1). We acknowledge W. den Dunnen and E. Brunt for autopsy tissue and M. Babl for technical assistance. We thank J. Epstein, J. Shorter, A. Cashmore and members of the Gitler laboratory for comments on the manuscript and discussions. We are grateful for the dedication of the patients and their families and for their invaluable contributions to this research.

Author information

Authors and Affiliations

Authors

Contributions

N.M.B. and A.D.G. are co-senior authors. M.P.H., H.-J.K., A.S.C.-P., F.G., U.R., G.A., J.Q.T., V.M.-Y.L., V.M.V.D., N.M.B. and A.D.G. designed the experiments. A.C.E., H.-J.K., M.P.H., B.S.J., X.F., M.A., R.G., M.M.L., U.R. and A.D.G. performed the research. D.J. and P.J.G. provided the reagents. D.C. and V.M.V.D. collected the clinical data. A.S.C.-P., L.E. and L.M. assessed clinical characteristics. M.P.H., H.-J.K., A.S.C.-P., F.G., A.P., L.E., L.M., U.R., G.A., J.Q.T., V.M.-Y.L., V.M.V.D., N.M.B. and A.D.G. analysed and interpreted data. N.M.B. and A.D.G. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Nancy M. Bonini or Aaron D. Gitler.

Ethics declarations

Competing interests

[Competing Interests: A.D.G. is an inventor on patents and patent applications that have been licensed to FoldRx.]

Supplementary information

Supplementary Information

This file contains Supplementary Data, a Supplementary Discussion, additional References and Supplementary Figures 1-11 with legends. (PDF 990 kb)

Supplementary Table 1

This file contains Ataxin-2 polyQ lengths for ALS patients and control individuals and ages for control individuals. (XLS 35 kb)

Supplementary Table 2

This file contains the demographic and clinical characteristics of ALS patients and control individuals. (XLS 22 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elden, A., Kim, HJ., Hart, M. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010). https://doi.org/10.1038/nature09320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09320

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing