Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synaptic laminin–calcium channel interaction organizes active zones in motor nerve terminals

Abstract

Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin β2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to clustering of channels, which in turn recruit other presynaptic components. Perturbation of this interaction in vivo results in disassembly of neurotransmitter release sites, resembling defects previously observed in an autoimmune neuromuscular disorder, Lambert–Eaton myasthenic syndrome. These results identify an extracellular ligand of the voltage-gated calcium channel as well as a new laminin receptor. They also suggest a model for the development of nerve terminals, and provide clues to the pathogenesis of a synaptic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laminin 9 interacts with pore-forming (CaV) subunits of calcium channels.
Figure 2: A binding site for VGCC on laminin β2.
Figure 3: A binding site for laminin β2 on the VGCC.
Figure 4: Laminin β2 promotes presynaptic differentiation by clustering VGCCs.
Figure 5: A new light microscopic assay for active zones used to monitor defects in laminin β2 and CaV2.1 mutant NMJs.
Figure 6: Blocking laminin β2–VGCC interactions in vivo disassembles active zones.

Similar content being viewed by others

References

  1. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999)

    Article  CAS  Google Scholar 

  2. Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003)

    Article  CAS  Google Scholar 

  3. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000)

    Article  CAS  Google Scholar 

  4. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Yamagata, M., Sanes, J. R. & Weiner, J. A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003)

    Article  CAS  Google Scholar 

  6. Noakes, P. G., Gautam, M., Mudd, J., Sanes, J. R. & Merlie, J. P. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374, 258–262 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Patton, B. L., Chiu, A. Y. & Sanes, J. R. Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393, 698–701 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Knight, D., Tolley, L. K., Kim, D. K., Lavidis, N. A. & Noakes, P. G. Functional analysis of neurotransmission at β2-laminin deficient terminals. J. Physiol. (Lond.) 546, 789–800 (2003)

    Article  CAS  Google Scholar 

  9. Li, S., Edgar, D., Fassler, R., Wadsworth, W. & Yurchenco, P. D. The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624 (2003)

    Article  CAS  Google Scholar 

  10. Patton, B. L., Miner, J. H., Chiu, A. Y. & Sanes, J. R. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J. Cell Biol. 139, 1507–1521 (1997)

    Article  CAS  Google Scholar 

  11. Porter, B. E., Weis, J. & Sanes, J. R. A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14, 549–559 (1995)

    Article  CAS  Google Scholar 

  12. Son, Y. J., Patton, B. L. & Sanes, J. R. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur. J. Neurosci. 11, 3457–3467 (1999)

    Article  CAS  Google Scholar 

  13. Sunderland, W. J., Son, Y. J., Miner, J. H., Sanes, J. R. & Carlson, S. S. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (α4β2γ1) with non-erythroid spectrin. J. Neurosci. 20, 1009–1019 (2000)

    Article  CAS  Google Scholar 

  14. Hermanson, G. T. Bioconjugate Techniques 785 (Academic, San Diego, 1996)

    Google Scholar 

  15. Arikkath, J. & Campbell, K. P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003)

    Article  CAS  Google Scholar 

  16. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000)

    Article  CAS  Google Scholar 

  17. Spafford, J. D. & Zamponi, G. W. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr. Opin. Neurobiol. 13, 308–314 (2003)

    Article  CAS  Google Scholar 

  18. Urbano, F. J., Rosato-Siri, M. D. & Uchitel, O. D. Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q-type deficient neuromuscular junctions. Mol. Membr. Biol. 19, 293–300 (2002)

    Article  CAS  Google Scholar 

  19. Hunter, D. D. et al. Primary sequence of a motor neuron-selective adhesive site in the synaptic basal lamina protein S-laminin. Cell 59, 905–913 (1989)

    Article  CAS  Google Scholar 

  20. Sather, W. A. & McCleskey, E. W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65, 133–159 (2003)

    Article  CAS  Google Scholar 

  21. Flanagan, J. G. et al. Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods Enzymol. 327, 19–35 (2000)

    Article  CAS  Google Scholar 

  22. Arce, V. et al. Cardiotrophin-1 requires LIFRβ to promote survival of mouse motoneurons purified by a novel technique. J. Neurosci. Res. 55, 119–126 (1999)

    Article  CAS  Google Scholar 

  23. Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003)

    Article  CAS  Google Scholar 

  24. Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000)

    Article  CAS  Google Scholar 

  25. Urbano, F. J. et al. Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proc. Natl Acad. Sci. USA 100, 3491–3496 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Robitaille, R., Adler, E. M. & Charlton, M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5, 773–779 (1990)

    Article  CAS  Google Scholar 

  27. Jun, K. et al. Ablation of P/Q-type Ca(2 + ) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc. Natl Acad. Sci. USA 96, 15245–15250 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Pagani, R. et al. Differential expression of α1 and β subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience 123, 75–85 (2004)

    Article  CAS  Google Scholar 

  29. Maximov, A. & Bezprozvanny, I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22, 6939–6952 (2002)

    Article  CAS  Google Scholar 

  30. Mochida, S. et al. Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc. Natl Acad. Sci. USA 100, 2819–2824 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Martin, P. T., Ettinger, A. J. & Sanes, J. R. A synaptic localization domain in the synaptic cleft protein laminin β2 (s-laminin). Science 269, 413–416 (1995)

    Article  ADS  CAS  Google Scholar 

  32. Patton, B. L. et al. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nature Neurosci. 4, 597–604 (2001)

    Article  CAS  Google Scholar 

  33. Fukuoka, T. et al. Lambert-Eaton myasthenic syndrome: I. Early morphological effects of IgG on the presynaptic membrane active zones. Ann. Neurol. 22, 193–199 (1987)

    Article  CAS  Google Scholar 

  34. Nagel, A., Engel, A. G., Lang, B., Newsom-Davis, J. & Fukuoka, T. Lambert-Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann. Neurol. 24, 552–558 (1988)

    Article  CAS  Google Scholar 

  35. Vincent, A., Beeson, D. & Lang, B. Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur. J. Biochem. 267, 6717–6728 (2000)

    Article  CAS  Google Scholar 

  36. Takamori, M., Maruta, T. & Komai, K. Lambert-Eaton myasthenic syndrome as an autoimmune calcium-channelopathy. Neurosci. Res. 36, 183–191 (2000)

    Article  CAS  Google Scholar 

  37. Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000)

    Article  CAS  Google Scholar 

  38. Yin, Y. et al. Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 36, 114–127 (2003)

    Article  CAS  Google Scholar 

  39. Missler, M. et al. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 424, 939–948 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Umemori for laminin–alkaline phosphatase fusion constructs; J. Haubenreich, M. Wagenbach, E. Ottersburg, S. Makishima and L. Schwarz for assistance; J. M. Cunningham for electron microscopy; C. Yokoyama for discussions; H. Shin and R. W. Tsien for CaV2.1 mutant mice; R. E. Westenbroek and P. Greengard for antibodies; W. A. Catterall, T. P. Snutch and K. G. Beam for VGCC plasmids; W. Yuan and J. Nerbonne for physiological recordings and the Mouse Genetics Core at Washington University for animal husbandry. This work was supported by grants from the National Institutes of Health to S.S.C. and J.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Sanes.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Characterization of purified Torpedo laminin-9 by SDS-PAGE electrophoresis and immunoblotting. (PDF 113 kb)

Supplementary Figure 2

Inhibition of laminin-VGCC interaction by soluble laminin fragments. (PDF 43 kb)

Supplementary Figure 3

Characterization of antibody to the 11th extracellular loop of VGCC. (PDF 232 kb)

Supplementary Figure 4

Direct interaction of laminin β2- and VGCC-derived peptides measured in solution or by bead-binding. (PDF 50 kb)

Supplementary Figure 5

Inhibition of synaptic vesicle clustering in cultured motoneurons by VGCC peptide. (PDF 32 kb)

Supplementary Figure 6

Histological analysis of Cav 2.1 mutant neuromuscular junction. (PDF 5273 kb)

Supplementary Figure 7

Vesicle number and polarity in NMJs from mice injected with Cav 2.1- or Cav 1.2-derived peptides. (PDF 31 kb)

Supplementary Figure Legends (RTF 14 kb)

Supplementary Methods

Additional methods used in the experiments. (RTF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimune, H., Sanes, J. & Carlson, S. A synaptic laminin–calcium channel interaction organizes active zones in motor nerve terminals. Nature 432, 580–587 (2004). https://doi.org/10.1038/nature03112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing