Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of ERas in promoting tumour-like properties in mouse embryonic stem cells

Abstract

Embryonic stem (ES) cells are pluripotent cells derived from early mammalian embryos1,2. Their immortality and rapid growth make them attractive sources for stem cell therapies3; however, they produce tumours (teratomas) when transplanted, which could preclude their therapeutic usage4. Why ES cells, which lack chromosomal abnormalities, possess tumour-like properties is largely unknown. Here we show that mouse ES cells specifically express a Ras-like gene, which we have named ERas. We show that human HRasp, which is a recognized pseudogene, does not contain reported base substitutions and instead encodes the human orthologue of ERas. This protein contains amino-acid residues identical to those present in active mutants of Ras5 and causes oncogenic transformation in NIH 3T3 cells. ERas interacts with phosphatidylinositol-3-OH kinase6 but not with Raf7,8. ERas-null ES cells maintain pluripotency but show significantly reduced growth and tumorigenicity, which are rescued by expression of ERas complementary DNA or by activated phosphatidylinositol-3-OH kinase. We conclude that the transforming oncogene ERas is important in the tumour-like growth properties of ES cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of ERas.
Figure 2: Transformation by ERas.
Figure 3: Role of ERas in ES cell growth.
Figure 4: PI(3)K activation by ERas.

Similar content being viewed by others

References

  1. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    Article  ADS  CAS  Google Scholar 

  2. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981)

    Article  ADS  CAS  Google Scholar 

  3. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Freed, C. R. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson's disease? Proc. Natl Acad. Sci. USA 99, 1755–1757 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312, 71–75 (1984)

    Article  ADS  CAS  Google Scholar 

  6. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–1661 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Zhang, X. F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001)

    Article  CAS  Google Scholar 

  10. Chen, Z. Q., Ulsh, L. S., DuBois, G. & Shih, T. Y. Posttranslational processing of p21 ras proteins involves palmitylation of the C-terminal tetrapeptide containing cysteine-186. J. Virol. 56, 607–612 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. & Lowy, D. R. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583–586 (1984)

    Article  ADS  CAS  Google Scholar 

  12. Miyoshi, J., Kagimoto, M., Soeda, E. & Sakaki, Y. The human c-Ha-ras2 is a processed pseudogene inactivated by numerous base substitutions. Nucleic Acids Res. 12, 1821–1828 (1984)

    Article  CAS  Google Scholar 

  13. Meiner, V. L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl Acad. Sci. USA 93, 14041–14046 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992)

    Article  CAS  Google Scholar 

  15. Nichols, J., Evans, E. P. & Smith, A. G. Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348 (1990)

    CAS  PubMed  Google Scholar 

  16. Gassmann, M., Donoho, G. & Berg, P. Maintenance of an extrachromosomal plasmid vector in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 92, 1292–1296 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Fasano, O. et al. Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc. Natl Acad. Sci. USA 81, 4008–4012 (1984)

    Article  ADS  CAS  Google Scholar 

  18. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997)

    Article  CAS  Google Scholar 

  19. Cheng, A. M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998)

    Article  CAS  Google Scholar 

  20. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999)

    Article  CAS  Google Scholar 

  21. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467 (1997)

    Article  CAS  Google Scholar 

  22. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998)

    Article  CAS  Google Scholar 

  23. Sun, H. et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 96, 6199–6204 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995)

    Article  CAS  Google Scholar 

  26. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16, 4117–4127 (1996)

    Article  CAS  Google Scholar 

  27. Jirmanova, L., Afanassieff, M., Gobert-Gosse, S., Markossian, S. & Savatier, P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21, 5515–5528 (2002)

    Article  CAS  Google Scholar 

  28. Quilliam, L. A. M.-R. et al. Ras/R-Ras3, a transforming ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J. Biol. Chem. 274, 23850–23857 (1999)

    Article  CAS  Google Scholar 

  29. Clark, G. J., Cox, A. D., Graham, S. M. & Der, C. J. Biological assays for Ras transformation. Methods Enzymol. 255, 395–412 (1995)

    Article  CAS  Google Scholar 

  30. Rosario, M., Paterson, H. F. & Marshall, C. J. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 18, 1270–1279 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Kaiho, Y. Tokuzawa and M. Murakami for discussion; C. Takigawa and J. Iida for technical assistance; T. Ichisaka and Y. Samitsu for blastocyst microinjection; R. Farese Jr for RF8 ES cells, R. Jaenisch and T. Noda for J1 cells; W. Skarnes and S. Young for CGR8 cells; H. Niwa for MG1.19 cells, pCAG-IP and pBIKS(- )BgeopA; M. Okabe and J.-i. Miyazaki for pCX–EGFP; K. Kohno and T. Kitamura for PLAT-E cells and pMX retroviral vectors; and S. Young, R. Farese Jr and R. Pitas for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yamanaka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Mitsui, K. & Yamanaka, S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423, 541–545 (2003). https://doi.org/10.1038/nature01646

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01646

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing