Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders

Abstract

Schizophrenia (SZ) and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that may share an underlying pathology suggested by shared genetic risk variants. We sequenced the exonic regions of 215 genes in 147 ASD cases, 273 SZ cases and 287 controls, to identify rare risk mutations. Genes were primarily selected for their function in the synapse and were categorized as: (1) Neurexin and Neuroligin Interacting Proteins, (2) Post-synaptic Glutamate Receptor Complexes, (3) Neural Cell Adhesion Molecules, (4) DISC1 and Interactors and (5) Functional and Positional Candidates. Thirty-one novel loss-of-function (LoF) variants that are predicted to severely disrupt protein-coding sequence were detected among 2 861 rare variants. We found an excess of LoF variants in the combined cases compared with controls (P=0.02). This effect was stronger when analysis was limited to singleton LoF variants (P=0.0007) and the excess was present in both SZ (P=0.002) and ASD (P=0.001). As an individual gene category, Neurexin and Neuroligin Interacting Proteins carried an excess of LoF variants in cases compared with controls (P=0.05). A de novo nonsense variant in GRIN2B was identified in an ASD case adding to the growing evidence that this is an important risk gene for the disorder. These data support synapse formation and maintenance as key molecular mechanisms for SZ and ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  2. Freitag CM . The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 2007; 12: 2–22.

    Article  CAS  PubMed  Google Scholar 

  3. Tiihonen J, Lonnqvist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A et al. 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study). Lancet 2009; 374: 620–627.

    Article  PubMed  Google Scholar 

  4. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  5. Lord C, Risi S, Lambrecht L, Cook EH Jr., Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  6. Fombonne E . Epidemiology of pervasive developmental disorders. Pediatric Res 2009; 65: 591–598.

    Article  Google Scholar 

  7. Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE et al. Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry 2009; 194: 500–509.

    Article  PubMed  Google Scholar 

  8. Fernell E, Gillberg C . Autism spectrum disorder diagnoses in Stockholm preschoolers. Res Dev Disabil 2010; 31: 680–685.

    Article  PubMed  Google Scholar 

  9. Craddock N, Owen MJ . Data and clinical utility should be the drivers of changes to psychiatric classification. Br J Psychiatry 2010; 197: 158–159.

    Article  PubMed  Google Scholar 

  10. Sullivan PF, Magnusson C, Reichenberg A, Boman M, Dalman C, Davidson M et al. Family history of schizophrenia and bipolar disorder as risk factors for autism family history of psychosis as risk factor for ASD. Arch Gen Psychiatry 2012; 69: 1099–1103.

    Article  PubMed  PubMed Central  Google Scholar 

  11. King BH, Lord C . Is schizophrenia on the autism spectrum? Brain Res 2011; 1380: 34–41.

    Article  CAS  PubMed  Google Scholar 

  12. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  13. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. New Engl J Med 2008; 359: 1685–1699.

    Article  CAS  PubMed  Google Scholar 

  14. Ballif BC, Theisen A, Coppinger J, Gowans GC, Hersh JH, Madan-Khetarpal S et al. Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication. Mol Cytogenet 2008; 1: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hogart A, Wu D, LaSalle JM, Schanen NC . The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2010; 38: 181–191.

    Article  CAS  PubMed  Google Scholar 

  18. Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 2009; 46: 242–248.

    Article  CAS  PubMed  Google Scholar 

  19. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011; 16: 17–25.

    Article  CAS  PubMed  Google Scholar 

  23. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 2010; 87: 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43: 838–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.

    Article  CAS  PubMed  Google Scholar 

  29. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Sabatti C, Geurts van Kessel A et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83: 504–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  33. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.

    Article  CAS  PubMed  Google Scholar 

  35. Reichelt AC, Rodgers RJ, Clapcote SJ . The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology 2012; 62: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  36. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  PubMed  Google Scholar 

  38. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D . Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70: 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2012; 17: 996–1006.

    Article  CAS  PubMed  Google Scholar 

  40. O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 2011; 16: 286–292.

    Article  CAS  PubMed  Google Scholar 

  41. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS ONE 2008; 3: e3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakai Y, Shaw CA, Dawson BC, Dugas DV, Al-Mohtaseb Z, Hill DE et al. Protein interactome reveals converging molecular pathways among autism disorders. Science translational medicine. 2011; 3: 86ra49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Myers RA, Casals F, Gauthier J, Hamdan FF, Keebler J, Boyko AR et al. A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet 2011; 7: e1001318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  PubMed  Google Scholar 

  47. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43: 585–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chahrour MH, Yu TW, Lim ET, Ataman B, Coulter ME, Hill RS et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 2012; 8: e1002635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moens LN, De Rijk P, Reumers J, Van den Bossche MJ, Glassee W, De Zutter S et al. Sequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population. PLoS ONE 2011; 6: e23450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kenny EM, Cormican P, Gilks WP, Gates AS, O'Dushlaine CT, Pinto C et al. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection. DNA Res 2011; 18: 31–38.

    Article  CAS  PubMed  Google Scholar 

  56. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 2012; 72: 620–628.

    Article  CAS  PubMed Central  Google Scholar 

  57. Donohoe G, Walters J, Morris DW, Quinn EM, Judge R, Norton N et al. Influence of NOS1 on verbal intelligence and working memory in both patients with schizophrenia and healthy control subjects. Arch Gen Psychiatry 2009; 66: 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  58. Cochrane LE, Tansey KE, Gill M, Gallagher L, Anney RJ . Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Res 2010; 3: 342–344.

    Article  PubMed  Google Scholar 

  59. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG . Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000; 3: 661–669.

    Article  CAS  PubMed  Google Scholar 

  60. Laumonnier F, Cuthbert PC, Grant SG . The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80: 205–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  PubMed  Google Scholar 

  62. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lemire M . Defining rare variants by their frequencies in controls may increase type I error. Nature genetics 2011; 43: 391–392.

    Article  CAS  PubMed  Google Scholar 

  64. Pearson RD . Bias due to selection of rare variants using frequency in controls. Nat Genet 2011; 43: 391–392.

    Article  CAS  Google Scholar 

  65. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012; 335: 823–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  68. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ . CIPP a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 1998; 11: 161–172.

    Article  CAS  PubMed  Google Scholar 

  70. Barilari M, Dente L . The neuronal proteins CIPP, Cypin and IRSp53 form a tripartite complex mediated by PDZ and SH3 domains. Biol Chem 2010; 391: 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  71. Trepanier CH, Jackson MF, MacDonald JF . Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 2012; 279: 12–19.

    Article  CAS  PubMed  Google Scholar 

  72. Grant SG, O'Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER . Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 1992; 258: 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  73. Beggs HE, Soriano P, Maness PF . NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol 1994; 127: 825–833.

    Article  CAS  PubMed  Google Scholar 

  74. Cain DP, Grant SG, Saucier D, Hargreaves EL, Kandel ER . Fyn tyrosine kinase is required for normal amygdala kindling. Epilepsy Res 1995; 22: 107–114.

    Article  CAS  PubMed  Google Scholar 

  75. Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42: 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  76. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012; 149: 525–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M et al. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 2009; 29: 10869–10882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M et al. Genetic enhancement of learning and memory in mice. Nature 1999; 401: 63–69.

    Article  CAS  PubMed  Google Scholar 

  79. Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ et al. Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS ONE 2009; 4: e7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohrluder J, Schwarten M, Willbold D . Structure and potential function of gamma-aminobutyrate type A receptor-associated protein. FEBS J 2009; 276: 4989–5005.

    Article  CAS  PubMed  Google Scholar 

  81. Mejias R, Adamczyk A, Anggono V, Niranjan T, Thomas GM, Sharma K et al. Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proc Natl Acad Sci USA 2011; 108: 4920–4925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 1995; 81: 233–243.

    Article  CAS  PubMed  Google Scholar 

  83. Sonnenberg A, Liem RK . Plakins in development and disease. Exp Cell Res 2007; 313: 2189–2203.

    Article  CAS  PubMed  Google Scholar 

  84. Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB et al. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. Ann Neurol 2012; 71: 569–572.

    Article  CAS  PubMed  Google Scholar 

  85. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  86. Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ . Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet 2012; 21: 1018–1024.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. Funding for this study was provided by the Health Research Board (HRB Ireland; HRA/2009/45) and Science Foundation Ireland (SFI; 08/IN.1/B1916). Next-generation sequencing was performed in TrinSeq (Trinity Genome Sequencing Laboratory; http://www.medicine.tcd.ie/sequencing), a core facility funded by SFI under Grant No. [07/RFP/GEN/F327/EC07] to Dr Morris. Ms Furlong’s PhD studentship is funded by the HRB 4-Year PhD Programme in Molecular Medicine at TCD. We acknowledge use of the Trinity Biobank control sample and support from the Trinity Centre for High Performance Computing. This work was supported by grant funding from the Health Research Board (Ireland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D W Morris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenny, E., Cormican, P., Furlong, S. et al. Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Mol Psychiatry 19, 872–879 (2014). https://doi.org/10.1038/mp.2013.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.127

Keywords

This article is cited by

Search

Quick links