Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study

Abstract

A whole genome association study was performed in a phase 3 clinical trial conducted to evaluate a novel antipsychotic, iloperidone, administered to treat patients with schizophrenia. Genotypes of 407 patients were analyzed for 334 563 single nucleotide polymorphisms (SNPs). SNPs associated with iloperidone efficacy were identified within the neuronal PAS domain protein 3 gene (NPAS3), close to a translocation breakpoint site previously observed in a family with schizophrenia. Five other loci were identified that include the XK, Kell blood group complex subunit-related family, member 4 gene (XKR4), the tenascin-R gene (TNR), the glutamate receptor, inotropic, AMPA 4 gene (GRIA4), the glial cell line-derived neurotrophic factor receptor-alpha2 gene (GFRA2), and the NUDT9P1 pseudogene located in the chromosomal region of the serotonin receptor 7 gene (HTR7). The study of these polymorphisms and genes may lead to a better understanding of the etiology of schizophrenia and of its treatment. These results provide new insight into response to iloperidone, developed with the ultimate goal of directing therapy to patients with the highest benefit-to-risk ratio.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 2000.

  2. Bondy B, Spellmann I . Pharmacogenetics of antipsychotics: useful for the clinician? Curr Opin Psychiatry 2007; 20: 126–130.

    Article  Google Scholar 

  3. Reynolds GP, Templeman LA, Godlewska BR . Pharmacogenetics of schizophrenia. Expert Opin Pharmacother 2006; 7: 1429–1440.

    Article  CAS  Google Scholar 

  4. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  Google Scholar 

  5. Kane JM, Malhotra A . The future of pharmacotherapy for schizophrenia. World Psychiatry 2003; 2: 81–86.

    PubMed  PubMed Central  Google Scholar 

  6. Kalkman HO, Subramanian N, Hoyer D . Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology 2001; 25: 904–914.

    Article  CAS  Google Scholar 

  7. Kalkman HO, Feuerbach D, Lotscher E, Schoeffter P . Functional characterization of the novel antipsychotic iloperidone at human D2, D3, alpha 2C, 5-HT6, and 5-HT1A receptors. Life Sci 2003; 73: 1151–1159.

    Article  CAS  Google Scholar 

  8. Richelson E, Souder T . Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 2000; 68: 29–39.

    Article  CAS  Google Scholar 

  9. Ichikawa J, Meltzer HY . Relationship between dopaminergic and serotonergic neuronal activity in the frontal cortex and the action of typical and atypical antipsychotic drugs. Eur Arch Psychiatry Clin Neurosci 1999; 249 (Suppl 4): 90–98.

    Article  Google Scholar 

  10. Jain KK . An assessment of iloperidone for the treatment of schizophrenia. Expert Opin Investig Drugs 2000; 9: 2935–2943.

    Article  CAS  Google Scholar 

  11. Cutler AJ, Kalali AH, Weiden P, Hamilton J, Wolfgang CD . Four-week, double-blind, placebo- and ziprasidone-controlled trial of iloperidone in patients with acute exacerbations of schizophrenia. J Clin Psychopharmacol 2008; 28 (Suppl 1): S20–S28.

    Article  CAS  Google Scholar 

  12. Weiden PJ, Cutler A, Polymeropoulos MH, Wolfgang CD . Safety profile of iloperidone: a pooled analysis of 6-week acute-phase pivotal trials. J Clin Psychopharmacol 2008; 28 (Suppl 1): S12–S19.

    Article  CAS  Google Scholar 

  13. Baroldi P, Wolfgang C . A Pharmacokinetic (PK)-Pharmacodynamic (PD) Relationship Exists for Efficacy of Iloperidone, a Novel Investigational Atypical Antipsychotic Agent. American Psychiatric Association 2007 Meeting POSTER NR507—available at: http://www.psych.org/edu/other_res/lib_archives/archives/meetings/AMN/2007nra.pdf.

  14. Verbeke G, Molenberghs G . Linear Mixed Models for Longitudinal Data. Springer: New York, 2000.

    Google Scholar 

  15. Little RJA, Rubin DB . Statistical Analysis with Missing Data, 2nd edn. Wiley: New York, 2003.

    Google Scholar 

  16. Molenberghs G, Thijs H, Jansen I, Beunckens C, Kenward MG, Mallinck-rodt C et al. Analyzing incomplete longitudinal clinical trial data. Biostatistics 2004; 5: 445–464.

    Article  Google Scholar 

  17. Cook RJ, Zeng L, Yi Y . Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Biometrics 2004; 60: 820–828.

    Article  Google Scholar 

  18. Mallinckrodt CH, Clark WS, David SR . Accounting for dropout bias using mixed-effects models. J Biopharm Stat 2001; 11: 9–21.

    Article  CAS  Google Scholar 

  19. Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 2: 945–959.

    Google Scholar 

  20. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995; 57: 289–300.

    Google Scholar 

  21. Kukreti R, Tripathi S, Bhatnagar P, Gupta S, Chauhan C, Kubendran S et al. Association of DRD2 gene variant with schizophrenia. Neurosci Lett 2006; 392: 68–71.

    Article  CAS  Google Scholar 

  22. Bishop JR, Ellingrod VL, Moline J, Miller D . Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 2005; 77: 253–260.

    Article  Google Scholar 

  23. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005; 77: 918–936.

    Article  CAS  Google Scholar 

  24. Lee HJ, Song JY, Kim JW, Jin S-Y, Hong MS, Park JK et al. Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav Brain Funct 2005; 1: 15.

    Article  Google Scholar 

  25. Hamajima N, Matsuo K, Tajima K, Mizutani M, Iwata H, Iwase T et al. Limited association between a catechol-O-methyltransferase (COMT) polymorphism and breast cancer risk in Japan. Int J Clin Oncol 2001; 6: 13–18.

    Article  CAS  Google Scholar 

  26. Ronai Z, Barta C, Guttman A, Lakatos K, Gervai J, Staub M et al. Genotyping the –521C/T functional polymorphism in the promoter region of dopamine D4 receptor (DRD4) gene. Electrophoresis 2001; 22: 1102–1105.

    Article  CAS  Google Scholar 

  27. Huang YY, Battistuzzi C, Oquendo MA, Harkavy-Friedman J, Greenhill L, Zalsman G et al. Human 5-HT1A receptor C(–1019)G polymorphism and psychopathology. Int J Neuropsychopharmacol 2004; 7: 441–451.

    Article  CAS  Google Scholar 

  28. Joober R, Benkelfat C, Brisebois K, Toulouse A, Turecki G, Lal S et al. T102C polymorphism in the 5-HT2A gene and schizophrenia: relation to phenotype and drug response variability. J Psychiatry Neurosci 1999; 24: 141–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S et al. Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Bioinformatics 2005; 21: 1958–1963.

    Article  CAS  Google Scholar 

  30. BRLMM: an improved genotype calling method for the GeneChip® Human Mapping 500 K Array Set. Affymetrix Web site. Available at: http://www.affymetrix.com/support/technical/whitepapers/brlmm_whitepaper.pdf (accessed 26 July).

  31. Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL et al. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. BMC Med Genet 2007; 8 (Suppl 1): S6.

    Article  Google Scholar 

  32. Newton-Cheh C, Guo CY, Wang TJ, O’donnell CJ, Levy D, Larson MG . Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med Genet 2007; 8 (Suppl 1): S7.

    Article  Google Scholar 

  33. Gottlieb DJ, O’Connor GT, Wilk JB . Genome-wide association of sleep and circadian phenotypes. BMC Med Genet 2007; 8 (Suppl 1): S9.

    Article  Google Scholar 

  34. Arking DE, Pfeufer A, Post W, Kao WHL, Newton-Cheh C, Ikeda M et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 2006; 38: 644–651.

    Article  CAS  Google Scholar 

  35. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW . Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 2003; 40: 325–332.

    Article  CAS  Google Scholar 

  36. Calenda G, Peng J, Redman CM, Sha Q, Wu X, Lee S . Identification of two new members, XPLAC and XTES, of the XK family. Gene 2006; 370: 6–16.

    Article  CAS  Google Scholar 

  37. Jung HH, Haker H . Schizophrenia as a manifestation of X-linked McLeod-Neuroacanthocytosis syndrome. J Clin Psychiatry 2004; 65: 722–723.

    Article  Google Scholar 

  38. Wu C-Y, Chiu C-C . Usher syndrome with psychotic symptoms: two cases in the same family. Psychiatry Clin Neurosci 2006; 60: 626–628.

    Article  Google Scholar 

  39. Carnemolla B, Leprini A, Borsi L, Querze G, Urbini S, Zardi L . Human tenascin-R: complete primary structure, pre-mRNA alternative splicing and gene localization on chromosome 1q23-q24. J Biol Chem 1996; 271: 8157–8160.

    Article  CAS  Google Scholar 

  40. Leprini A, Gherzi R, Siri A, Querze G, Viti F, Zardi L . The human tenascin-R gene. J Biol Chem 1996; 271: 31251–31254.

    Article  CAS  Google Scholar 

  41. Wei J, Hemmings GP . TNXB locus may be a candidate gene predisposing to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 125B: 43–49.

    Article  CAS  Google Scholar 

  42. Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A et al. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am J Med Genet B Neuropsychiatr Genet 2003; 116B: 17–22.

    Article  Google Scholar 

  43. Blaveri E, Kalsi G, Lawrence J, Quested D, Moorey H, Lamb G et al. Genetic association studies of schizophrenia using the 8p21-22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur J Hum Genet 2001; 9: 469–472.

    Article  CAS  Google Scholar 

  44. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  Google Scholar 

  45. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  Google Scholar 

  46. Michelato A, Bonvicini C, Ventriglia M, Scassellati C, Randazzo R, Bignotti S et al. 3′ UTR (AGG)n repeat of glial cell line-derived neurotrophic factor (GDNF) gene polymorphism in schizophrenia. Neurosci Lett 2004; 357: 235–237.

    Article  CAS  Google Scholar 

  47. Ikeda M, Iwata N, Kitajima T, Suzuki T, Yamanouchi Y, Kinoshita Y et al. Positive association of the serotonin 5-HT7 receptor gene with schizophrenia in a Japanese population. Neuropsychopharmacology 2006; 31: 866–871.

    Article  CAS  Google Scholar 

  48. Moises HW, Yang L, Kristbjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  Google Scholar 

  49. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci USA 2005; 102: 14052–14057.

    Article  CAS  Google Scholar 

  50. Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T et al. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA 2004; 101: 13648–13653.

    Article  CAS  Google Scholar 

  51. Goldberger C, Gourion D, Leroy S, Schurhoff F, Bourdel M-C, Leboyer M et al. Population-based and family-based association study of 5′UTR polymorphism of the reelin gene and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 137B: 51–55.

    Article  Google Scholar 

  52. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    Article  CAS  Google Scholar 

  53. Guo S, Shi Y, Zhao X, Duan S, Zhou J, Meng J et al. No genetic association between polymorphisms in the AMPA receptor subunit GluR4 gene (GRIA4) and schizophrenia in the Chinese population. Neurosci Lett 2004; 369: 168–172.

    Article  CAS  Google Scholar 

  54. Stone JM, Morrison PD, Pilowsky LS . Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol 2007; 21: 440–452.

    Article  CAS  Google Scholar 

  55. Semba J, Akanuma N, Wakuta M, Tanaka N, Suhara T . Alterations in the expressions of mRNA for GDNF and its receptors in the ventral midbrain of rats exposed to subchronic phencyclidine. Brain Res Mol Brain Res 2004; 124: 88–95.

    Article  CAS  Google Scholar 

  56. Kongsamut S, Roehr JE, Cai J, Hartman HB, Weissensee P, Kerman LL et al. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol 1996; 317: 417–423.

    Article  CAS  Google Scholar 

  57. Forton JT, Udalova IA, Campino S, Rockett KA, Hull J, Kwiatkowski DP . Localization of a long-range cis-regulatory element of IL13 by allelic transcript ratio mapping. Genome Res 2007; 17: 82–87.

    Article  CAS  Google Scholar 

  58. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T et al. Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 2005; 3: e7.

    Article  Google Scholar 

  59. Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF . Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 2005; 23: 1383–1390.

    Article  CAS  Google Scholar 

  60. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 8: 707–747.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all of the patients who participated in this study. We also thank Michael Di Marino and Ingeborg Holt for their assistance in the statistical analysis and Kelly Greer for her technical support. We are grateful to Dr Yoav Benjamini and Chip Clark for their critical reviews of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Lavedan.

Additional information

Conflict of interests

All authors are employees of Vanda Pharmaceuticals Inc. and have no additional affiliations or financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavedan, C., Licamele, L., Volpi, S. et al. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry 14, 804–819 (2009). https://doi.org/10.1038/mp.2008.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.56

Keywords

This article is cited by

Search

Quick links