Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients

Abstract

Multiple endocrine neoplasia type 1 (MEN1) syndrome is characterized by the occurrence of tumors of parathyroids, neuroendocrine cells of the gastro-enteropancreatic tract and anterior pituitary. MEN1 gene encodes menin-oncosuppressor protein. Loss of heterozygosity at 11q13 is typical of MEN1 tumors. We have analyzed the MEN1 mRNA and menin expression in fibroblasts from normal skin biopsies and from MEN1 patients (two with a frameshift 738del4 (exon 3) mutation, introducing a premature stop codon, and an individual with an R460X (exon 10) nonsense mutation). The expression of full-length menin protein did not differ between MEN1 and normal fibroblasts. Wild-type alleles mRNAs were expressed in MEN1 patients, whereas mutant alleles were partially degraded by nonsense-mediated mRNA decay pathway, suggesting a mechanism of compensation for allelic loss by the up-regulation of wild-type menin expression at a post-transcriptional level. Small-interfering RNA silencing of the wild-type mRNA allele abolished menin compensation, whereas the ribozyme silencing of the MEN1-mutated mRNA allele resulted in strongly enhanced wild-type menin expression. Gel-retardation analysis showed that in vitro-specific RNA–protein complexes bound to MEN1 mRNA. These findings contribute to the understanding of tumorigenesis in MEN1, offering the basis for the development of RNA-based therapies in MEN1 gene mutation carriers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Debelenko LV, Brambilla E, Agarwal SK, Swalwell JI, Kester MB, Lubensky IA et al. Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum Mol Genet 1997; 6: 2285–2290.

    Article  CAS  Google Scholar 

  2. Farnebo F, Teh BT, Kytölä S, Svensson A, Phelan C, Sandelin K et al. Alterations of the MEN1 gene in sporadic parathyroid tumors. J Clin Endocrinol Metab 1998; 83: 2627–2630.

    CAS  PubMed  Google Scholar 

  3. Heppner C, Kester MB, Agarwal SK, Debelenko LV, Emmert-Buck MR, Guru SC et al. Somatic mutation of the MEN1 gene in parathyroid tumors. Nat Genet 1997; 16: 375–378.

    Article  CAS  Google Scholar 

  4. Zhuang Z, Ezzat SZ, Vortmeyer AO, Weil R, Oldfield EH, Park WS et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 1997; 57: 5446–5451.

    CAS  PubMed  Google Scholar 

  5. Zhuang Z, Vortmeyer AO, Pack S, Huang S, Pham TA, Wang C et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 1997; 57: 4682–4686.

    CAS  PubMed  Google Scholar 

  6. Knudson Jr AG . Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  Google Scholar 

  7. Guru SC, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 1998; 95: 1630–1634.

    Article  CAS  Google Scholar 

  8. Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX . Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003; 17: 1880–1892.

    Article  CAS  Google Scholar 

  9. Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ . Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003; 63: 4836–4841.

    CAS  PubMed  Google Scholar 

  10. Biondi CA, Gartside MG, Waring P, Loffler KA, Stark MS, Magnuson MA et al. Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol 2004; 24: 3125–3131.

    Article  CAS  Google Scholar 

  11. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001; 98: 1118–1123.

    Article  CAS  Google Scholar 

  12. Crabtree JS, Scacheri PC, Ward JM, McNally SR, Swain GP, Montagna C et al. Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 2003; 23: 6075–6085.

    Article  CAS  Google Scholar 

  13. Scacheri PC, Kennedy AL, Chin K, Miller MT, Hodgson JG, Gray JW et al. Pancreatic insulinomas in multiple endocrine neoplasia, type I knockout mice can develop in the absence of chromosome instability or microsatellite instability. Cancer Res 2004; 64: 7039–7044.

    Article  CAS  Google Scholar 

  14. Scacheri PC, Crabtree JS, Kennedy AL, Swain GP, Ward JM, Marx SJ et al. Homozygous loss of menin is well tolerated in liver, a tissue not affected in MEN1. Mamm Genome 2004; 15: 872–877.

    Article  CAS  Google Scholar 

  15. Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 2005; 37: 369–374.

    Article  CAS  Google Scholar 

  16. Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 2005; 102: 14659–14664.

    Article  CAS  Google Scholar 

  17. Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–754.

    Article  CAS  Google Scholar 

  18. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    Article  CAS  Google Scholar 

  19. Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y . Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20: 6147–6158.

    Article  CAS  Google Scholar 

  20. Scacheri PC, Davis S, Odom DT, Crawford GE, Perkins S, Halawi MJ et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PloS Gene 2006; 2: e51.

    Article  Google Scholar 

  21. Agarwal SK, Impey S, McWeeney S, Scacheri PC, Collins FS, Goodman RH et al. Distribution of menin-occupied regions in chromatin specifies a broad role of menin in transcriptional regulation. Neoplasia 2007; 9: 101–107.

    Article  CAS  Google Scholar 

  22. Ikeo Y, Sakurai A, Suzuki R, Zhang MX, Koizumi S, Takeuchi Y et al. Proliferation-associated expression of the MEN1 gene as revealed by in situ hybridisation: possible role of the menin as a negative regulator of cell proliferation under DNA damage. Lab Invest 2000; 80: 797–804.

    Article  CAS  Google Scholar 

  23. Kaji H, Canaff L, Goltzman D, Hendy GN . Cell cycle regulation of menin expression. Cancer Res 1999; 59: 5097–5101.

    CAS  PubMed  Google Scholar 

  24. Wautot V, Khodaei S, Frappart L, Buisson N, Baro E, Lenoir GM et al. Expression analysis of endogenous menin, the product of the multiple endocrine neoplasia type 1 gene, in cell lines and human tissues. Int J Cancer 2000; 85: 877–881.

    Article  CAS  Google Scholar 

  25. Forsberg L, Zablewska B, Piehl F, Weber G, Lagercrantz S, Gaudray P et al. Differential expression of multiple alternative spliceforms of the Men1 tumor suppressor gene in mouse. Int J Mol Med 2001; 8: 681–689.

    CAS  PubMed  Google Scholar 

  26. Khodaei-O’Brien S, Zablewska B, Fromaget M, Bylund L, Weber G, Gaudray P . Heterogeneity at the 5′-end of MEN1 transcripts. Biochem Biophys Res Commun 2000; 276: 508–514.

    Article  Google Scholar 

  27. Stewart C, Parente F, Piehl F, Farnebo F, Quincey D, Silins G et al. Characterization of the mouse Men1 gene and its expression during development. Oncogene 1998; 17: 2485–2493.

    Article  CAS  Google Scholar 

  28. Lemmens I, Van de Ven1 WJM, Kas K, Zhang CX, Giraud S, Wautot V et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum Mol Genet 1997; 6: 1177–1183.

    Article  CAS  Google Scholar 

  29. Zablewska B, Bylund L, Mandic SA, Fromaget M, Gaudray P, Weber G . Transcription regulation of the multiple endocrine neoplasia type 1 gene in human and mouse. J Clin Endocrinol Metab 2003; 88: 3845–3851.

    Article  CAS  Google Scholar 

  30. Ferolla P, Falchetti A, Filosso P, Tomassetti P, Tamburrano G, Avenia N et al. Thymic neuroendocrine carcinoma (carcinoid) in multiple endocrine neoplasia type 1 syndrome: the Italian series. J Clin Endocrinol Metab 2005; 90: 2603–2609.

    Article  CAS  Google Scholar 

  31. Silva AL, Romão L . The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett 2009; 583: 499–505.

    Article  CAS  Google Scholar 

  32. La P, Yang Y, Karnik SK, Silva AC, Schnepp RW, Kim SK et al. Menin-mediated caspase 8 expression in suppressing multiple endocrine neoplasia type 1. J Biol Chem 2007; 282: 31332–31340.

    Article  CAS  Google Scholar 

  33. Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada T . Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol Cell Biol 2004; 24: 6569–6580.

    Article  CAS  Google Scholar 

  34. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE . Nonsense-mediated decay approaches the clinic. Nat Genet 2004; 36: 801–808.

    Article  CAS  Google Scholar 

  35. Hammond SM . MicroRNAs as tumor suppressors. Nat Genet 2007; 39: 582–583.

    Article  CAS  Google Scholar 

  36. Keene JD . RNA regulons: coordination of post-trascriptional events. Nat Rev Genet 2007; 8: 533–543.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Fondazione Ente Cassa di Risparmio di Firenze and from the FIRMO Fondazione Raffaella Becagli (to MLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Brandi.

Ethics declarations

Competing interests

We declare that the content of the manuscript is original and that it has not been published or accepted for publication, either in whole or in part, in any form as well as that the manuscript is not currently under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzi, E., Marini, F., Tognarini, I. et al. Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients. Cancer Gene Ther 17, 814–825 (2010). https://doi.org/10.1038/cgt.2010.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.39

Keywords

This article is cited by

Search

Quick links