Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Prospects for whole-genome linkage disequilibrium mapping of common disease genes

Abstract

Recently, attention has focused on the use of whole-genome linkage disequilibrium (LD) studies to map common disease genes. Such studies would employ a dense map of single nucleotide polymorphisms (SNPs) to detect association between a marker and disease. Construction of SNP maps is currently underway. An essential issue yet to be settled is the required marker density of such maps. Here, I use population simulations to estimate the extent of LD surrounding common gene variants in the general human population as well as in isolated populations. Two main conclusions emerge from these investigations. First, a useful level of LD is unlikely to extend beyond an average distance of roughly 3 kb in the general population, which implies that approximately 500,000 SNPs will be required for whole-genome studies. Second, the extent of LD is similar in isolated populations unless the founding bottleneck is very narrow or the frequency of the variant is low (<5%).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LD around a variant of 50% frequency in the general human population.
Figure 2: LD around a variant of 10% frequency.
Figure 3: Distributions of variant age.
Figure 4: LD around a variant of 50% frequency for different expansion times.
Figure 5: LD around a variant of 50% frequency for different ancestral population sizes.
Figure 6: LD in an isolated population.
Figure 7: LD under different scenarios of population growth.

Similar content being viewed by others

References

  1. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  Google Scholar 

  2. Lander, E.S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  CAS  Google Scholar 

  3. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 ( 1995).

    Article  CAS  Google Scholar 

  4. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  Google Scholar 

  5. Landegren, U., Nilsson, M. & Kwok, P.-Y. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8, 769 –776 (1998).

    Article  CAS  Google Scholar 

  6. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  Google Scholar 

  7. Collins, F.S., Guyer, M.S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  CAS  Google Scholar 

  8. Hudson, R.R. Gene genealogies and the coalescent process. in Oxford Surveys in Evolutionary Biology (eds Futuyma, D. & Antonovics, J.) 1–44 (Oxford University Press, Oxford, 1991).

    Google Scholar 

  9. Harpending, H.C. et al. Genetic traces of ancient demography. Proc. Natl Acad. Sci. USA 95, 1961–1967 (1998).

    Article  CAS  Google Scholar 

  10. Devlin, B. & Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311–322 (1995).

    Article  CAS  Google Scholar 

  11. Kaplan, N. & Weir, B.S. Expected behavior of conditional linkage disequilibrium. Am. J. Hum. Genet. 51, 333–343 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Camp, N.J. Genomewide transmission/disequilibrium testing—consideration of the genotype relative risks at disease loci. Am. J. Hum. Genet. 61, 1424–1430 (1998).

    Article  Google Scholar 

  13. Jorde, L.B. Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56, 11–14 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark, A.G. et al. Haplotype structure and population-genetics inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    Article  CAS  Google Scholar 

  15. Muller-Myhsok, B. & Abel, L. Genetic analysis of complex diseases. Science 275, 1328– 1329 (1998).

    Google Scholar 

  16. Reich, D.E. & Goldstein, D.B. Genetic evidence for a Paleolithic human population explosion in Africa. Proc. Natl Acad. Sci. USA 95, 8119–8123 ( 1998).

    Article  CAS  Google Scholar 

  17. Takahata, N. Allelic genealogy and human evolution. Mol. Biol. Evol. 10, 2–22 (1993).

    CAS  PubMed  Google Scholar 

  18. Ayala, F.J. The myth of Eve: molecular biology and human origins. Science 270, 1930–1936 (1995).

    Article  CAS  Google Scholar 

  19. Hastbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992).

    Article  CAS  Google Scholar 

  20. Robertson, A. & Hill, W.G. Population and quantitative genetics of many linked loci in finite populations. Proc. R. Soc. Lond. B Biol. Sci. 219, 253–264 (1983).

    Article  Google Scholar 

  21. Chapman, N.H. & Wijsman, E.M. Genome screens using linkage disequilibrium tests: optimal marker characteristics and feasibility. Am. J. Hum. Genet. 63, 1872–1885 ( 1998).

    Article  CAS  Google Scholar 

  22. Thompson, E.A. & Neel, V.J. Allelic disequilibrium and allele frequency distribution as a function of social and demographic history. Am. J. Hum. Genet. 60, 197– 204 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Terwilliger, J.D., Zollner, S., Laan, M. & Paabo, S. Mapping genes through the use of linkage disequilibrium generated by genetic drift: "drift mapping" in small populations with no demographic expansion. Hum. Hered. 48, 138–154 ( 1998).

    Article  CAS  Google Scholar 

  24. Collins, F.S. et al. New goals for the U.S. human genome project: 1998-2003. Science 282, 682–689 ( 1998).

    Article  CAS  Google Scholar 

  25. Li, W.-H. Molecular Evolution (Sinauer, Sunderland, 1997).

    Google Scholar 

  26. Carlson, C.S. & Cox, D.R. Linkage disequilibrium of SNPs on human chromosome 21. Am. J. Hum. Genet. 63, A 284 (1998).

    Google Scholar 

  27. Lai, E., Riley, J., Purvis, I. & Roses, A. A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics 54, 31–38 ( 1998).

    Article  CAS  Google Scholar 

  28. Hudson, R.R. Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183–201 (1983).

    Article  CAS  Google Scholar 

  29. Hudson, R.R. The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109, 611 –631 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hudson, R.R. The how and why of generating gene genealogies. in Mechanisms of Molecular Evolution (eds Takahata, N. & Clark, A.G.) 23– 36 (Sinauer, Sunderland, 1992).

    Google Scholar 

  31. Donnelly, P. & Tavare, S. Coalescents and genealogical structure under neutrality. Annu. Rev. Genet. 29, 40–421 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work grew out of conversations with E. Lander, and I am grateful for his advice and encouragement. I thank D. Altshuler, K. Ardlie, M. Cargill, H. Coller, G. Daley, M. Daly, M. Eberle, J. Felsenstein, S. Kruglyak, S.-N. Liu, K. Markianos, D. Slonim, D. Wang and E. Wijsman for helpful discussions and comments on the manuscript, and M. Eberle for invaluable assistance with simulations and figure preparation. The paper benefited from discussion during a meeting on SNPs held at the Banbury Center and from comments of anonymous referees. This work was supported in part by grants from NHGRI and NIMH. L.K. is a James S. McDonnell Centennial Fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22, 139–144 (1999). https://doi.org/10.1038/9642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing