Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas

A Correction to this article was published on 01 September 2001

Abstract

Pure populations of neurofibroma-derived Schwann cells bearing both NF1 mutated alleles (NF1−/−) have been isolated from different neurofibromas1 showing loss of heterozygosity of nearly the entire 17q chromosome. By comparing molecular and fluorescent in situ hybridization analysis of these cells, we demonstrate mitotic recombination is the mechanism underlying this type of loss of heterozygosity leading to reduction to homozygosity of NF1 germline mutation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Refined LOH analysis of 27 neurofibromas from 15 patients with NF1.
Figure 2: Mitotic recombination in neurofibroma-derived Schwann cells.

Similar content being viewed by others

References

  1. Serra, E. et al. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations.. Hum. Mol. Genet. 9, 3055–3064 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Riccardi, V.M. Neurofibromatosis: Phenotype, Natural History and Pathogenesis (Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  3. Colman, S.D., Williams, C.A. & Wallace, M.R. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nature Genet. 11, 90–92 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Daschner, K. et al. Clonal origin of tumor cells in a plexiform neurofibroma with LOH in NF1 intron 38 and in dermal neurofibromas without LOH of the NF1 gene. Biochem. Biophys. Res. Commun. 234, 346–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Serra, E. et al. Confirmation of a double-hit model for the NF1 gene in benign neurofibromas. Am. J. Hum. Genet. 61, 512–519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kluwe, L., Friedrich, R.E. & Mautner, V.F. Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet. Cytogenet. 113, 65–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Eisenbarth, I., Beyer, K., Krone, W. & Assum, G. Toward a survey of somatic mutation of the NF1 gene in benign neurofibromas of patients with neurofibromatosis type 1. Am. J. Hum. Genet. 66, 393–401 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. John, A.M., Ruggieri, M., Ferner, R. & Upadhyaya, M. A search for evidence of somatic mutations in the NF1 gene. J. Med. Genet. 37, 44–49 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasmussen, S.A. et al. Chromosome 17 loss-of-heterozygosity studies in benign and malignant tumors in neurofibromatosis type 1. Genes Chromosomes Cancer 28, 425–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Serra, E. et al. Somatic NF1 mutational spectrum in benign neurofibromas: mRNA splice defects are common among point mutations. Hum. Genet. 108, 416–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dorschner, M.O., Sybert, V.P., Weaver, M., Pletcher, B.A. & Stephens, K. NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum. Mol. Genet. 9, 35–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Cavenee, W.K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Tischfield, J.A. Loss of heterozygosity or: how I learned to stop worrying and love mitotic recombination. Am. J. Hum. Genet. 61, 995–999. (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wallace, M.R. et al. Culture of cytogenetically abnormal schwann cells from benign and malignant NF1 tumors. Genes Chromosomes Cancer 27, 117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Correa, C., Brems, H., Lazaro, C., Marynen, P. & Legius, E. Unequal meiotic crossover: A frequent cause of NF1 microdeletions. Am. J. Hum. Genet. 66, 1969–1974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephens, K. et al. Double mitotic recombination at common breakpoint intervals leading to interstitial isodisomy and LOH. Am. J. Hum. Genet. 63,–A39 (1998).

    Google Scholar 

  17. Cooper, L.J. et al. Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood 96, 2310–2313. (2000).

    CAS  PubMed  Google Scholar 

  18. Gupta, P.K. et al. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination. Cancer Res. 57, 1188–1193. (1997).

    CAS  PubMed  Google Scholar 

  19. Holt, D. et al. Interindividual variation in mitotic recombination. Am. J. Hum. Genet. 65, 1423–1427 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Easton, D.F., Ponder, M.A., Huson, S.M. & Ponder, B.A.J. An analysis of variation in expression of NF1: evidence for modifying genes. Am. J. Hum. Genet. 53, 305–313 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, Q., Chen, M., Buchwald, M. & Phillips, R.A. A simple rapid method for isolation of high quality genomic DNA from animal tissues. Nucleic Acids Res . 23, 5087–5088 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ars, E. et al. Mutation affecting mRNA splicing are the most common molecular defects in patients with neurobiromatosis type 1. Hum. Mol. Genet. 9, 237–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Nadal, M. et al. Down syndrome: characterisation of a case with partial trisomy of chromosome 21 owing to a paternal balanced translocation (15;21) (q26;q22.1) by FISH. J. Med. Genet. 34, 50–54 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and clinicians who participated in this study. We thank D. Otero, N. Andreu, L. Sumoy and C. Pucharcós for technical advice and H. Kruyer for preparation of the manuscript. This work was supported by grants of the Fondo de Investigaciones Sanitarias de la Seguridad Social (98-0992), the Fundació August Pi i Sunyer/Marató de TV3, the Institut Català de la Salut, the Ministerio de Educación y Ciencia (CICYT/SAF96-1787-E) and the Generalitat de Catalunya (CIRIT/1997SGR-00085). E.A. was a fellow of the Comissió Interdepartamental de Recerca i Innovació Tecnològica of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conxi Lázaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, E., Rosenbaum, T., Nadal, M. et al. Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas. Nat Genet 28, 294–296 (2001). https://doi.org/10.1038/90148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing