Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutant glycosyltransferase and altered glycosylation of α-dystroglycan in the myodystrophy mouse

Abstract

Spontaneous and engineered mouse mutants have facilitated our understanding of the pathogenesis of muscular dystrophy and they provide models for the development of therapeutic approaches1. The mouse myodystrophy (myd) mutation produces an autosomal recessive, neuromuscular phenotype2. Homozygotes have an abnormal gait, show abnormal posturing when suspended by the tail and are smaller than littermate controls. Serum creatine kinase is elevated and muscle histology is typical of a progressive myopathy with focal areas of acute necrosis and clusters of regenerating fibers3. Additional aspects of the phenotype include sensorineural deafness, reduced lifespan and decreased reproductive fitness2,3. The myd mutation maps to mouse chromosome 8 at approximately 33 centimorgans (cM) (refs. 2, 47). Here we show that the gene mutated in myd encodes a glycosyltransferase, Large. The human homolog of this gene (LARGE) maps to chromosome 22q. In myd, an intragenic deletion of exons 4–7 causes a frameshift in the resultant mRNA and a premature termination codon before the first of the two catalytic domains. On immunoblots, a monoclonal antibody to α-dystroglycan (a component of the dystrophin-associated glycoprotein complex) shows reduced binding in myd, which we attribute to altered glycosylation of this protein. We speculate that abnormal post-translational modification of α-dystroglycan may contribute to the myd phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the 19p/22q homology boundary on mouse chromosome 8 (MMU8).
Figure 2: Detection of the myd mutation.
Figure 3: Large is a glycosyltransferase.
Figure 4: Immunoblot analysis of DGC proteins in myd.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Campbell, K.P. & Allamand, V. Animal models for muscular dystrophy: valuable tools for the development of therapies. Hum. Mol. Genet. 9, 2459–2467 (2000).

    Article  Google Scholar 

  2. Lane, P.W., Beamer, T.C. & Myers, D.D. Myodystrophy, a new myopathy on chromosome 8 of the mouse. J. Hered. 67, 135–138 (1976).

    Article  CAS  Google Scholar 

  3. Mathews, K.D., et al. Phenotypic and pathological evaluation of the myd mouse, a candidate model for facioscapulohumeral dystrophy. J. Neuropathol. Exp. Neurol. 54, 601–606 (1995).

    Article  CAS  Google Scholar 

  4. Mathews, K.D., Mills, K.A., Bailey, H., Schelper, R. & Murray, J. Mouse myodystrophy (myd) mutation: refined mapping in an interval flanked by homology with distal human 4q. Muscle Nerve S2, S98–S102 (1995).

    Article  Google Scholar 

  5. Mills, K.A., et al. Genetic mapping near the myd locus on mouse chromosome 8. Mamm. Genome 6, 278–280 (1995).

    Article  CAS  Google Scholar 

  6. Grewal, P.K., et al. The mouse homolog of FRG1, a candidate gene for FSHD, maps proximal to the myodystrophy mutation on chromosome 8. Mamm. Genome 8, 394–398 (1997).

    Article  CAS  Google Scholar 

  7. Grewal, P.K., Carim Todd, L., Maarel, S.V.D., Frants, R.R. & Hewitt, J.E. FRG1, a gene in the FSH muscular dystrophy region on human chromosome 4q35, is highly conserved in vertebrates and invertebrates. Gene 216, 13–19 (1998).

    Article  CAS  Google Scholar 

  8. Mathews, K.D. & Mills, K.A. The molecular genetics of human facioscapulohumeral muscular dystrophy and the myodystrophy mouse. Curr. Opin. Neurol. 9, 394–399 (1996).

    Article  CAS  Google Scholar 

  9. Grewal, P.K., Bolland, D.J., Carim Todd, L. & Hewitt, J.E. High resolution mapping of mouse chromosome 8 identifies an evolutionary chromosomal breakpoint. Mamm. Genome 9, 603–607 (1998).

    Article  CAS  Google Scholar 

  10. Grewal, P.K., et al. Cloning of the murine unconventional myosin gene Myo9b and identification of alternative splicing. Gene 240, 389–398 (1999).

    Article  CAS  Google Scholar 

  11. Kim, J., et al. Homology-driven assembly of a sequence-ready mouse BAC contig map spanning regions related to the 46Mb gene-rich euchromatic segments of human chromosome 19. Genomics (in press).

  12. Peyrard, M., et al. The human LARGE gene from 22q12.3-q13.1 is a new distinct member of the glycosyltransferase gene family. Proc. Natl. Acad. Sci. USA 96, 598–603 (1999).

    Article  CAS  Google Scholar 

  13. Breton, C. & Imberty, A. Structure/function studies of glycosyltransferases. Curr. Opin. Struct. Biol. 9, 563–571 (1999).

    Article  CAS  Google Scholar 

  14. Heinrichs, D.E., Yethon, J.A. & Whitfield, C. Molecular basis for structural diversity in the core region of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol. Microbiol. 30, 221–232 (1998).

    Article  CAS  Google Scholar 

  15. Sasaki, K., et al. Expression cloning of cDNA encoding a human β-1, 3- N -acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. USA 94, 14292–14299 (1997).

    Google Scholar 

  16. Durbeej, M., Henry, M.D. & Campbell, K.P. Dystroglycan in development and disease. Curr. Opin. Cell Biol. 10, 594–601 (1998).

    Article  CAS  Google Scholar 

  17. Herrmann, R., et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum. Mol. Genet. 9, 2335–2340 (2000).

    Article  CAS  Google Scholar 

  18. Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  Google Scholar 

  19. Ibraghimov-Beskrovnaya, O., et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  Google Scholar 

  20. Nutting, D.F., MacPike, A.D. & Meier, H. The calcium content of various tissues from myodystrophic and dystrophic mice. J. Hered. 71, 15–18 (1980).

    Article  CAS  Google Scholar 

  21. Côté, P.D., Moukhles, H., Lindebaum, M. & Carbonetto, S. Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genet. 23, 338–342 (1999).

    Article  Google Scholar 

  22. Williamson, R.A., et al. Dystroglycan is essential for early embryonic development: disruption of Reichart's membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 (1997).

    Article  CAS  Google Scholar 

  23. Kobayashi, K., et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392 (1998).

    Article  CAS  Google Scholar 

  24. Aravind, L. & Koonin, E.V. The fukutin protein family—predicted enzymes modifying cell-surface molecules. Curr. Biol. 9, R836–R837 (1999).

    Article  CAS  Google Scholar 

  25. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  26. Herrmann, R., et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum. Mol. Genet. 9, 2335–2340 (2000).

    Article  CAS  Google Scholar 

  27. Gee, S.H., et al. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268, 14972–14980 (1993).

    CAS  PubMed  Google Scholar 

  28. Yamada, H., Shimizu, T., Tanaka, T., Campbell, K.P. & Matsumura, K. Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Lett. 352, 49–53 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hamshere and P. Scotting for helpful discussions and insightful comments on the manuscript, S. Kröger for generously providing antibody and M. Bucan for access to RPCI BAC library filters. We acknowledge the Wellcome Trust for a travel grant to P.K.G. This work was also supported by the Austrian Verein zur Erforschung der Muskelerkrankungen bei Kindern (P.J.H.) and by grant SFB Nr. 006-F613 from the Austrian Science Research Foundation (R.E.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Hewitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, P., Holzfeind, P., Bittner, R. et al. Mutant glycosyltransferase and altered glycosylation of α-dystroglycan in the myodystrophy mouse. Nat Genet 28, 151–154 (2001). https://doi.org/10.1038/88865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing