Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat

Abstract

In response to moderately increased dietary fat content, melanocortin-4 receptor-null mutant (MC4R−/−) mice exhibit hyperphagia and accelerated weight gain compared to wild-type mice. An increased feed efficiency (weight gain/kcal consumed) argues that mechanisms in addition to hyperphagia are instrumental in causing weight gain. We report two specific defects in coordinating energy expenditure with food intake in MC4R−/− mice. Wild-type mice respond to an increase in the fat content of the diet by rapidly increasing diet-induced thermogenesis and by increasing physical activity, neither of which are observed in MC4R−/− mice. Leptin-deficient and MC3R−/− mice regulate metabolic rate similarly to wild-type mice in this protocol. Melanocortinergic pathways involving MC4-R-regulated neurons, which rapidly respond to signals not requiring changes in leptin, thus seem to be important in regulating metabolic and behavioral responses to dietary fat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of MC4R−/− and wild-type mice to restricted food intake and cold.
Figure 2: Marked increase in weight observed in MC4R−/− mice associated with a change from low-fat to moderate-fat diet is not observed in wild-type or Lepob/Lepob mice.
Figure 3: Abnormal feeding response of MC4R−/− mice to increasing fat content of the diet.
Figure 4: Male MC4R−/− mice fail to increase energy expenditure and regulate the ratio of fatty acid/carbohydrate oxidation in response to switching from low-fat to moderate-fat diet.
Figure 5: Increase in dietary fat content does not affect catecholamine turnover in wild-type mice during the period used to record VO2.
Figure 6: Wild-type mice, but not MC4R−/− mice, respond to the increased caloric content of the moderate-fat diet by increasing wheel running behavior (wheel turns per minute) during the lights-off period.

Similar content being viewed by others

References

  1. Leibel, R. L., Chung, W. K. & Chua, S. C .J. The molecular genetics of rodent single gene obesities. J. Biol. Chem. 272, 31937–31940 (1997).

    Article  CAS  Google Scholar 

  2. Yen, T. T., McKee, M. M. & Stamm, N. B. Thermogenesis and weight control. Int. J. Obes. 8 (Suppl. 1), 65–78 (1984).

    CAS  PubMed  Google Scholar 

  3. Frigeri, L. G., Wolff, G. L. & Teguh, C. Differential responses of yellow Avy/A and agouti A/a (BALB/c X VY) F1 hybrid mice to the same diets: glucose tolerance, weight gain, and adipocyte cellularity. Int. J. Obes. 12, 305–320 (1988).

    CAS  PubMed  Google Scholar 

  4. Marie, L. S., Miura, G. I., Marsh, D. J., Yagaloff, K. & Palmiter, R. D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl. Acad. Sci. USA 97, 12339–12344 (2000).

    Article  CAS  Google Scholar 

  5. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  Google Scholar 

  6. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    Article  CAS  Google Scholar 

  7. Marsh, D. J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122 (1999).

    Article  CAS  Google Scholar 

  8. Halaas, J. L. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883 (1997).

    Article  CAS  Google Scholar 

  9. Boston, B. A., Blaydon, K. M., Varnerin, J. & Cone, R. D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 278, 1641–1644 (1997).

    Article  CAS  Google Scholar 

  10. Cheung, C. C., Clifton, D. K. & Steiner, R. A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    Article  CAS  Google Scholar 

  11. Seeley, R. J. et al. Melanocortin receptors in leptin effects. Nature 390, 349 (1997).

    Article  CAS  Google Scholar 

  12. Satoh, N. et al. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249, 107–110 (1998).

    Article  CAS  Google Scholar 

  13. Smith, A. I. & Funder, J. W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9, 159–179 (1988).

    Article  CAS  Google Scholar 

  14. Low, M. J., Simerly, R. D. & Cone, R. D. Receptors for the melanocortin peptides in the central nervous system. Curr. Opin. Endocrinol. Diabet. 1, 79–88 (1994).

    Article  Google Scholar 

  15. Baskin, D. G. et al. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain. Res. 848, 114–123 (1999).

    Article  CAS  Google Scholar 

  16. Hagan, M. M. et al. Role of the CNS melanocortin system in the response to overfeeding. J. Neurosci. 19, 2362–2367 (1999).

    Article  CAS  Google Scholar 

  17. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  Google Scholar 

  18. Butler, A. A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).

    Article  CAS  Google Scholar 

  19. Schutz, Y., Bessard, T. & Jecquier, E. Thermogenesis measured over a whole day in obese and non-obese women. Am. J. Clin. Nutr. 40, 542–552 (1984).

    Article  CAS  Google Scholar 

  20. Ferrannini, E. The theoretical basis of indirect calorimetry: a review. Metabolism 37, 287–301 (1988).

    Article  CAS  Google Scholar 

  21. Zurlo, F. et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am. J. Phys. 259, E650–657 (1990).

    CAS  Google Scholar 

  22. Nakaya, Y. et al. Respiratory quotient in patients with non-insulin-dependent diabetes mellitus treated with insulin and oral hypoglycemic agents. Ann. Nutr. Metab. 42, 333–340 (1998).

    Article  CAS  Google Scholar 

  23. Mercer, S. W. & Trayhurn, P. Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. J. Nutr. 117, 2147–2153 (1987).

    Article  CAS  Google Scholar 

  24. Himms-Hagen, J., Hogan, S. & Zaror-Behrens, G. Increased brown adipose tissue thermogenesis in obese (ob/ob) mice fed a palatable diet. Am. J. Physiol. 250, E274–E281 (1986).

    CAS  PubMed  Google Scholar 

  25. Collins, S. et al. Role of leptin in fat regulation. Nature 380, 677 (1996).

    Article  CAS  Google Scholar 

  26. Levine, J. A., Eberhardt, N. L. & Jensen, M. D. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212–214 (1999).

    Article  CAS  Google Scholar 

  27. Trayhurn, P., Jones, P. M., McGuckin, M. M. & Goodbody, A. E. Effect of overfeeding on energy balance and brown fat thermogenesis in obese (ob/ob) mice. Nature 295, 323–325 (1982).

    Article  CAS  Google Scholar 

  28. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57Bl/6J mice. Diabetes 37, 1163–1167 (1988).

    Article  CAS  Google Scholar 

  29. Saladin, R. et al. Transient increase in obese gene expression after food intake or insulin administration. Nature 377, 527–532 (1995).

    Article  CAS  Google Scholar 

  30. Haynes, W. G., Morgan, D. A., Djalali, A., Sivitz, W. I. & Mark, A.L. Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 33, 542–547 (1999).

    Article  CAS  Google Scholar 

  31. De Souza, J., Butler, A. A. & Cone, R. D. Disproportionate inhibition of feeding in A(y) mice by certain stressors: a cautionary note. Neuroendocrinology 72, 126–132 (2000).

    Article  CAS  Google Scholar 

  32. Ziotopoulou, M., Mantzoros, C. S., Hileman, S. M. & Flier, J. S. Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice. Am. J. Physiol. Endocrinol. Metab. 279, E838–E845 (2000).

    Article  CAS  Google Scholar 

  33. Eckel, L. A. et al. Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am. J. Physiol. 275, R186–193 (1998).

    CAS  PubMed  Google Scholar 

  34. Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant PPGDK55819 to R.D.C. We thank K. Khong, E. Douthit and K.E. Miles for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Cone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, A., Marks, D., Fan, W. et al. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 4, 605–611 (2001). https://doi.org/10.1038/88423

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing