Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2

Abstract

The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance1,2,3. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3′ regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of RRS.
Figure 2: Sequence fluorograms for each of the mutations, indicating the base changes from wild type (underlined).
Figure 3: Sequence motifs and mutations in ROR2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Teebi, A.S. Autosomal recessive Robinow syndrome. Am. J. Med. Genet. 35, 64–68 (1990).

    Article  CAS  Google Scholar 

  2. Soliman, A.T, Rajab, A., Alsalmi, I. & Aziz Bedair, S.M. Recessive Robinow syndrome: with emphasis on endocrine functions. Metabolism 47, 1337–1343 (1998).

    Article  CAS  Google Scholar 

  3. Wadia, R.S. Recessively inherited costovertebral segmentation defect with mesomelia and peculiar facies (Covesdem syndrome): a new genetic entity? J. Med. Genet. 15, 123–127 (1978).

    Article  CAS  Google Scholar 

  4. Afzal, A.R. et al. Linkage of recessive Robinow syndrome to a 4 cM interval on chromosome 9q22. Hum. Genet. 106, 351–354 (2000).

    Article  CAS  Google Scholar 

  5. Gong, Y. et al. Brachydactyly type B: clinical description, genetic mapping to chromosome 9q and evidence for a shared ancestral mutation. Am. J. Hum. Genet. 64, 570–577 (1999).

    Article  CAS  Google Scholar 

  6. Oldridge, M. et al. Brachydactyly type B: linkage to chromosome 9q22 and evidence for genetic heterogeneity. Am. J. Hum. Genet. 64, 578–583 (1999).

    Article  CAS  Google Scholar 

  7. Oldridge, M. et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nature Genet. 24, 275–278 (2000).

    Article  CAS  Google Scholar 

  8. De Chiara, T.M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nature Genet. 24, 271–274 (2000).

    Article  CAS  Google Scholar 

  9. Takeuchi, S. et al. Mouse ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 71–78 (2000).

    Article  CAS  Google Scholar 

  10. Aksit, S. et al. Is the frequency of Robinow syndrome relatively high in Turkey? Four more case reports. Clin. Genet. 52, 226–230 (1997).

    Article  CAS  Google Scholar 

  11. Masiakowski, P. & Carroll, R.D. A novel family of cell surface receptors with tyrosine kinase-like domain. J. Biol. Chem. 267, 26181–26190 (1992).

    CAS  PubMed  Google Scholar 

  12. Wilson, C., Goberdhan, D.C. & Steller, H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 90, 7109–7113 (1993).

    Article  CAS  Google Scholar 

  13. Oishi, I. et al. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. J. Biol. Chem. 272, 11916–11923 (1997).

    Article  CAS  Google Scholar 

  14. Forrester, W.C., Dell, M., Perens, E. & Garriga, G. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400, 881–885 (1999).

    Article  CAS  Google Scholar 

  15. Frischmeyer, P.A. & Dietz, H.C. Nonsense mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

    Article  CAS  Google Scholar 

  16. Vihinen, M. et al. Structural basis for X-linked agammaglobulinemia. A tyrosine kinase disease. Proc. Natl Acad. Sci. USA 91, 12803–12807 (1994).

    Article  CAS  Google Scholar 

  17. Vorechovsky, I. et al. DNA-based mutation analysis of Bruton's tyrosine kinase gene in patients with X-linked agammaglobulinemia. Hum. Mol. Genet. 4, 51–58 (1995).

    Article  CAS  Google Scholar 

  18. Xu, Y.K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 4, R405–R406 (1998).

    Article  Google Scholar 

  19. Masiakowski, P. & Yancopoulos, G.D. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr. Biol. 4, R407 (1998).

  20. Robertson, S.C. et al. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulphide bond in the third immunoglobulin-like domain. Proc. Natl Acad. Sci. USA 95, 4567–4572 (1998).

    Article  CAS  Google Scholar 

  21. Gherardi, E., Gonzalez Manzano, R., Cottage, A., Hawker, K. & Aparicio, S. Evolution of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Ciba Found. Symp. 212, 24–41 (1997).

    CAS  PubMed  Google Scholar 

  22. Castellino, F.J. & McCance, S.G. The kringle domains of human plasminogen. Ciba Found. Symp. 212, 46–65 (1997).

    CAS  PubMed  Google Scholar 

  23. Schuster, V. et al. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood 90, 958–966 (1997).

    CAS  PubMed  Google Scholar 

  24. Schuster, V. et al. Compound-heterozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood 93, 3457–3466 (1999).

    CAS  PubMed  Google Scholar 

  25. Taylor, S.I. et al. Genetic basis of endocrine disease 1. Molecular genetics of insulin resistant diabetes mellitus. J. Clin. Endocrinol. Metab. 73, 1158–1163 (1991).

    Article  CAS  Google Scholar 

  26. Polinkovsky, A. et al. Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nature Genet. 17, 18–19 (1997).

    Article  CAS  Google Scholar 

  27. Thomas, J.T. et al. A human chondrodysplasia due to a mutation in a TGFb superfamily member. Nature Genet. 12, 315–317 (1996).

    Article  CAS  Google Scholar 

  28. Thomas, J.T. et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nature Genet. 17, 58–64 (1997).

    Article  CAS  Google Scholar 

  29. Robinow, M. The Robinow (fetal face) syndrome: a continuing puzzle. Clin. Dysmorphol. 2, 189–198 (1993).

    Article  CAS  Google Scholar 

  30. Kantaputra, P.N., Gorlin, R.J., Ukarapol, N., Unachak, K. & Sudasna, J. Robinow (fetal face) syndrome: report of a boy with dominant type and an infant with recessive type. Am. J. Med. Genet. 84, 1–7 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Mansour for suggestions; the Birth Defects Foundation (UK) for support; and The Wandsworth Heart & Stroke Study (F.P. Cappuccio and D.G. Cook) for the DNA samples from individuals of Pakistani descent. A.R.A., M.O. and A.O.M.W. were supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Jeffery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, A., Rajab, A., Fenske, C. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 25, 419–422 (2000). https://doi.org/10.1038/78107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing