Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis

Abstract

Spondylocostal dysostosis (SD, MIM 277300) is a group of vertebral malsegmentation syndromes with reduced stature resulting from axial skeletal defects. SD is characterized by multiple hemivertebrae, rib fusions and deletions with a non-progressive kyphoscoliosis. Cases may be sporadic or familial, with both autosomal dominant and autosomal recessive modes of inheritance reported1. Autosomal recessive SD maps to a 7.8-cM interval on chromosome 19q13.1–q13.3 (ref. 2) that is homologous with a mouse region containing a gene encoding the Notch ligand delta-like 3 (Dll3). Dll3 is mutated3 in the X-ray–induced mouse mutant pudgy (pu), causing a variety of vertebrocostal defects similar to SD phenotypes. Here we have cloned and sequenced human DLL3 to evaluate it as a candidate gene for SD and identified mutations in three autosomal recessive SD families. Two of the mutations predict truncations within conserved extracellular domains. The third is a missense mutation in a highly conserved glycine residue of the fifth epidermal growth factor (EGF) repeat, which has revealed an important functional role for this domain. These represent the first mutations in a human Delta homologue, thus highlighting the critical role of the Notch signalling pathway and its components in patterning the mammalian axial skeleton.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical features of spondylocostal dysostosis.
Figure 2: Organization of human DLL3.
Figure 3: Mutations in DLL3 identified in SD pedigrees.
Figure 4: A diagram representing the mutations in human and mouse DLL3.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mortier, G.R., Lachman, R.S., Bocian, M. & Rimoin, D.L. Multiple vertebral segmentation defects: analysis of 26 new patients and review of the literature. Am. J. Med. Genet. 61, 310–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Turnpenny, P.D. et al. A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1–q13.3. Am. J. Hum. Genet. 65, 175–182 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kusumi, K. et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genet. 19, 274–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Conlon, R.A., Reaume, A.G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  5. de Angelis, M.H., McIntyre, J.I. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386, 717–721 (1997).

    Article  Google Scholar 

  6. Evrard, Y.A., Lun, Y., Aulhehla, A., Gan, L. & Johnson, R.L. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (394).

  7. Zhang, N. & Gridley, T. Defects in somite formation in lunatic fringe -deficient mice. Nature 394, 374–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Dunwoodie, S.L., Henrique, D., Harrison, S.M. & Beddington, R.S.P. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    CAS  PubMed  Google Scholar 

  9. Turnpenny, P.D., Thwaites, R.J. & Boulos, F.N. Evidence for variable gene expression in a large inbred kindred with autosomal recessive spondylocostal dysostosis. J. Med. Genet. 28, 27–33 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Casamassima, A.C. et al. Spondylocostal dysostosis associated with anal and urogenital anomalies in a Mennonite sibship. Am. J. Med. Genet. 8, 117–127 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Delgoffe, C. et al. Dysostoses spondylocostales et cardiopathies congénitales. Ann. Pédiat. 29, 135–139 (1982).

    CAS  PubMed  Google Scholar 

  12. Simpson, J.M., Cook, A., Fagg, N.L.K., MacLachlan, N.A. & Sharland, G.K. Congenital heart disease in spondylothoracic dysostosis: two familial cases. J. Med. Genet. 32, 633–663 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonaime, J.L. et al. Le syndrome de dysostose spondylothoracique ou spondylocostale. Pédiatrie 33, 173–188 (1978).

    CAS  PubMed  Google Scholar 

  14. Robbins, J., Blondel, B.J., Gallahan, D. & Callahan, R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J. Virol. 66, 2594–2599 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lardelli, M., Dahlstrand, J. & Lendahl, U. The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev. 46, 123–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Lardelli, M. & Lendahl, U. Motch A and motch B–two mouse Notch homologues coexpressed in a wide variety of tissues. Exp. Cell. Res. 2, 364–372 (1993).

    Article  Google Scholar 

  17. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Weinmaster, G., Roberts, V. & Lemke, G. A homolog of Drosophila Notch expressed during mammalian development. Development 113, 931–941 (1991).

    Google Scholar 

  19. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J.L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  20. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Sidow, A. et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 389, 722–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Lindsell, C., Shawber, C., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Johnston, S.H. et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 124, 2245–2254 (1997).

    CAS  PubMed  Google Scholar 

  25. Cohen, B. et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nature Genet. 16, 283–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Greenwald, I. Structure/function studies of lin-12/Notch proteins. Curr. Biol. 4, 556–562 (1994).

    CAS  Google Scholar 

  28. Thomas, U., Speicher, S.A. & Knust, E. The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111, 749–761 (1991).

    CAS  PubMed  Google Scholar 

  29. Kopczynski, C.C., Alton, A.K., Fechtel, K., Kooh, P.J. & Muskavitch, M.A.T. Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev. 2, 1723–1735 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Artavanis-Taskonas, S. Alagille syndrome—a notch up for the Notch receptor. Nature Genet. 16, 212–213 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the families for cooperation; K. Maruthainar, K. Dewar and B. Birren for undertaking sequencing efforts; and the management and laboratory staff of The Nazareth Hospital, Israel for their help. This work was supported by the British Scoliosis Research Foundation, the Medical Research Council (UK), Action Research, the Skeletal Dysplasia Group (UK), the Children's Research Fund, the Darlington Charitable Trust, the Royal Devon & Exeter NHS Healthcare Trust and the University of Exeter. The assistance of the DNA Laboratories of the West Midlands Regional Genetics Service, Birmingham, the Yorkshire Regional Genetics Service, Leeds and the Kennedy-Galton Centre, London is appreciated. K.K. is supported by a Hitchings-Elion Fellowship of the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Turnpenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulman, M., Kusumi, K., Frayling, T. et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24, 438–441 (2000). https://doi.org/10.1038/74307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing