Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The SH2 tyrosine phosphatase Shp2 is required for mammalian limb development

Abstract

The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity1. Shp2 can potentiate signalling through the MAP-kinase pathway2,3,4,5,6 and is required during early mouse development for gastrulation4,7. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history8). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of wild-type (WT), Ptpn11-mutant or Fgfr1-mutant ES cells to the developing E10.5 embryo.
Figure 2: RNA in situ analysis for Fgf8 transcripts in chimaeric embryos.
Figure 3: Mesenchymal cell growth and adhesive properties.
Figure 4: Development of both the limb buds and the branchial arches is impaired in many Ptpn11-mutant chimaeras.

Similar content being viewed by others

References

  1. Hof, P., Pluskey, S., Dhe, P.S., Eck, M.J. & Shoelson, S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Tang, T.L., Freeman, R.J., O'Reilly, A.M., Neel, B.G. & Sokol, S.Y. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 80, 473–483 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Bennett, A.M., Hausdorff, S.F., O'Reilly, A.M., Freeman, R.M. & Neel, B.G. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol. Cell. Biol. 16, 1189–1202 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saxton, T.M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O'Reilly, A.M. & Neel, B.G. Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction. Mol. Cell. Biol. 18, 161–177 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh, E.S. et al. Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol. Cell. Biol. 19, 3205–3215 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saxton, T.M. & Pawson, T. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc. Natl Acad. Sci. USA 96, 3790–3795 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossant, J. & Spence, A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 14, 358–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Wood, S.A., Allen, N.D., Rossant, J., Auerbach, A. & Nagy, A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365, 87–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ciruna, B.G., Schwartz, L., Harpal, K., Yamaguchi, T.P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829–2841 (1997).

    CAS  PubMed  Google Scholar 

  11. Deng, C. et al. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 185, 42–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gardner, R.L. & Cockroft, D.L. Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125, 2397–2402 (1998).

    CAS  PubMed  Google Scholar 

  13. Johnson, R.L. & Tabin, C.J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Crossley, P.H. & Martin, G.R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  16. Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765 (1998).

    CAS  PubMed  Google Scholar 

  17. Manes, S. et al. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell. Biol. 19, 3125–3135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujioka, Y. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16, 6887–6899 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson, D.E., Ward, C.M., Wang, R. & Newman, P.J. The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling. J. Biol. Chem. 272, 6986–6993 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Li, S. & Muneoka, K. Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. Dev. Biol. 211, 335–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Ede, D.A. & Law, J.T. Computer simulation of vertebrate limb morphogenesis. Nature 221, 244–248 (1969).

    Article  CAS  PubMed  Google Scholar 

  22. Bowen, J., Hinchliffe, J.R., Horder, T.J. & Reeve, A.M. The fate map of the chick forelimb-bud and its bearing on hypothesized developmental control mechanisms. Anat. Embryol. (Berl.) 179, 269–283 (1989).

    Article  CAS  Google Scholar 

  23. Yu, D.H., Qu, C.K., Henegariu, O., Lu, X. & Feng, G.S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Riddle, R.D. et al. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Vogel, A., Roberts, C.D. & Niswander, L. Effect of FGF on gene expression in chick limb bud cells in vivo and in vitro. Dev. Biol. 171, 507–520 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hogan, B.L. Morphogenesis. Cell 96, 225–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Neel, B.G. & Tonks, N.K. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell. Biol. 9, 193–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Conlon, R.A. & Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–368 (1992).

    CAS  PubMed  Google Scholar 

  29. Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Kimura, Y. et al. Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev. Biol. 169, 347–358 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Cheng for BrdU injections; S. McMaster for animal husbandry; D. Duboule and R. Johnson for Hoxd13 and Lmx1b in situ probes, respectively; F. Gertler for the anti-Mena antibody; and G.R. Martin for critically reading the manuscript. Predoctoral support for T.M.S. was from the Medical Research Council of Canada. This work was supported by a grant from Bristol Myers-Squibb, a Terry Fox Programme grant from the National Cancer Institute of Canada and a Howard Hughes International Scholar award to T.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tracy M. Saxton or Tony Pawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxton, T., Ciruna, B., Holmyard, D. et al. The SH2 tyrosine phosphatase Shp2 is required for mammalian limb development. Nat Genet 24, 420–423 (2000). https://doi.org/10.1038/74279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing