Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development

Abstract

Here we show that the cell-cycle regulator p21 is involved in immune system function. T lymphocytes from p21−/− mice exhibit significant proliferative advantage over wild-type cells following prolonged stimulation, but not after primary activation. Consistent with this, p21-deficient mice accumulate abnormal amounts of CD4+ memory cells, and develop loss of tolerance towards nuclear antigens. Similar to human lupus, female p21-deficient mice develop antibodies against dsDNA, lymphadenopathy, and glomerulonephritis, leading to decreased viability. These data demonstrate a specialized role for p21 in the control of T-cell proliferation, tolerance to nuclear antigens, and female-prone lupus. These findings could be the basis for new therapeutic approaches to lupus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proliferative responses of p21−/− CD4+ T cells.
Figure 2: Lymphadenopathy, splenomegaly, and memory lymphocyte accumulation in p21−/− mice.
Figure 3: Glomerulonephritis development in p21−/− mice.
Figure 4: Total IgG and autoantibody profiles.

Similar content being viewed by others

References

  1. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–12 (1999).

    Article  CAS  Google Scholar 

  2. Li, R., Waga, S., Hannon, G.J., Beach, D. & Stillman, B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534–537 (1994).

    Article  CAS  Google Scholar 

  3. Cheng, M. et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583 (1999).

    Article  CAS  Google Scholar 

  4. Coats, S. et al. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr. Biol. 9, 163–173 (1999).

    Article  CAS  Google Scholar 

  5. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  6. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  7. Wang, Y.A., Elson, A. & Leder, P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc. Natl. Acad. Sci. USA 94, 14590–14595 (1997).

    Article  CAS  Google Scholar 

  8. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    Article  CAS  Google Scholar 

  9. Nourse, J. et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 372, 570–573 (1994).

    Article  CAS  Google Scholar 

  10. Sabzevari, H., Propp, S., Kono, D.H. & Theofilopoulos, A.N. G1 arrest and high expression of cyclin kinase and apoptosis inhibitors in accumulated activated/memory phenotype CD4+ cells of older lupus mice. Eur. J. Immunol. 27, 1901–1910 (1997).

    Article  CAS  Google Scholar 

  11. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  12. London, C. A., Pérez, V.L. & Abbas, A.K. Functional characteristics and survival requirements of memory CD4+ T lymphocytes in vivo. J. Immunol. 162, 766–773 (1999).

    CAS  PubMed  Google Scholar 

  13. Takahashi, S. et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J. Clin. Invest. 97, 1597–1604 (1996).

    Article  CAS  Google Scholar 

  14. Pape, K.A. et al. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunol. Rev. 156, 67–78 (1997).

    Article  CAS  Google Scholar 

  15. Ohashi, P.S. & Sarvetnick, N. Autoimmunity: a bias from tolerance to immunity. Curr. Opin. Immunol. 8, 815–817 (1997).

    Article  Google Scholar 

  16. Casciola-Rosen, L.A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  Google Scholar 

  17. Ophascharoensuk, V., Fero, M.J., Hughes, J., Roberts, J.M. & Shankland, S.J. The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nature Med. 4, 575–580 (1998).

    Article  CAS  Google Scholar 

  18. Megyesi, J., Safirstein, R.L. & Price, P.M. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J. Clin. Invest. 101, 777–782 (1998).

    Article  CAS  Google Scholar 

  19. Kim, Y.G. et al. The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis. Kidney Int. 55, 2349–2361 (1999).

    Article  CAS  Google Scholar 

  20. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  21. Bickerstaff, M.C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med. 5, 694–697 (1999).

    Article  CAS  Google Scholar 

  22. Paul, E. & Carroll, M.C. SAP-less chromatin triggers systemic lupus erythematosus. Nat. Med. 5, 607–608 (1999).

    Article  CAS  Google Scholar 

  23. Theofilopoulos, A.N. & Kono, D.H. Mechanisms and genetics of autoimmunity. Ann. NY Acad. Sci. 13, 225–235 (1998).

    Article  Google Scholar 

  24. Moser, K.L. et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African-American pedigrees. Proc. Natl. Acad. Sci. USA. 95, 14869–14874 (1998).

    Article  CAS  Google Scholar 

  25. Gaffney, P.M. et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc. Natl. Acad. Sci. USA. 95, 14875–14879 (1998).

    Article  CAS  Google Scholar 

  26. Berden, J.H., Hang, L., McConahey, P.J. & Dixon, F.J. Analysis of vascular lesions in murine SLE. I. Association with serologic abnormalities. Immunology 130, 1699–1705 (1983).

    CAS  Google Scholar 

  27. Balomenos, D., Rumold, R. & Theofilopoulos, A.N. Interferon-γ is required for lupus-like disease and lymphoaccumulation in MRL/lpr mice. J. Clin. Invest. 101, 364–371 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Cohn and A.N. Theofilopoulos for discussion and comments. We are also grateful to G. Hannon for the gift of p21−/− mice, A. Rebollo for IL-4, M.C. Moreno-Ortiz for assistance with FACS analysis C. Alonso for help with statistical analyses following FACS analysis and C. Mark for editorial assistance. The Department of Immunology and Oncology was founded and is supported by the Spanish Research Council (CSIC) and Pharmacia & Upjohn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Balomenos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balomenos, D., Martín-Caballero, J., García, M. et al. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med 6, 171–176 (2000). https://doi.org/10.1038/72272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing