Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability

Abstract

DNA mismatch repair is important because of its role in maintaining genomic integrity and its association with hereditary non-polyposis colon cancer (HNPCC). To identify new human mismatch repair proteins, we probed nuclear extracts with the conserved carboxy-terminal MLH1 interaction domain. Here we describe the cloning and complete genomic sequence of MLH3, which encodes a new DNA mismatch repair protein that interacts with MLH1. MLH3 is more similar to mismatch repair proteins from yeast, plants, worms and bacteria than to any known mammalian protein, suggesting that its conserved sequence may confer unique functions in mice and humans. Cells in culture stably expressing a dominant-negative MLH3 protein exhibit microsatellite instability. Mlh3 is highly expressed in gastrointestinal epithelium and physically maps to the mouse complex trait locus colon cancer susceptibility I (Ccs1). Although we were unable to identify a mutation in the protein-coding region of Mlh3 in the susceptible mouse strain, colon tumours from congenic Ccs1 mice exhibit microsatellite instability. Functional redundancy among Mlh3, Pms1 and Pms2 may explain why neither Pms1 nor Pms2 mutant mice develop colon cancer, and why PMS1 and PMS2 mutations are only rarely found in HNPCC families.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of different yeast DNA mismatch repair complexes and recognition specificity.
Figure 2: Characterization and cloning of MLH3.
Figure 3: MLH3 has high amino acid similarity to other DNA mismatch repair proteins.
Figure 4: MLH3 mRNA expression patterns in humans and mice.
Figure 5: Functional interactions between MLH3 and MLH1.
Figure 6: Association of colon cancer susceptibility 1, 2 and 3 genetic loci with DNA mismatch repair.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fishel, R. & Wilson, T. MutS homologs in mammalian cells . Curr. Opin. Genet. Dev. 7, 105– 113 (1997).

    Article  CAS  Google Scholar 

  2. Nakagawa, T., Datta, A. & Kolodner, R. Multiple functions of MutS and MutL-related complexes . Proc. Natl Acad. Sci. USA (in press).

  3. Reitmair, A., et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nature Genet. 11, 64– 70 (1995).

    Article  CAS  Google Scholar 

  4. Baker, S., et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature Genet. 13, 336– 342 (1996).

    Article  CAS  Google Scholar 

  5. Prolla, T.A., et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nature Genet. 18, 276–279 (1998).

    Article  CAS  Google Scholar 

  6. de Wind, N., et al. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321– 330 (1995).

    Article  CAS  Google Scholar 

  7. Edelmann, W., et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85, 1125–1134 ( 1996).

    Article  CAS  Google Scholar 

  8. Edelmann, W. et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor supression. Cancer Res. (in press).

  9. Edelmann, W., et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility . Cell 91, 467–477 (1997).

    Article  CAS  Google Scholar 

  10. Narayanan, L., et al. Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2. Proc. Natl Acad. Sci. USA 94, 3122–3127 ( 1997).

    Article  CAS  Google Scholar 

  11. Yao, X., et al. Different mutator phenotypes in Mlh1- versus Pms2-deficient mice . Proc. Natl Acad. Sci. USA 96, 6850– 6855 (1999).

    Article  CAS  Google Scholar 

  12. Lynch, H. & Lynch, J.F. 25 years of HNPCC. Anticancer Res. 14, 1617–1624 ( 1994).

    CAS  PubMed  Google Scholar 

  13. Lynch, H. & Smyrk, T. Identifying hereditary nonpolyposis colorectal cancer. N. Engl. J. Med. 338, 1537–1538 (1998).

    Article  CAS  Google Scholar 

  14. Akiyama, Y., et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 57, 3920–3923 (1997).

    CAS  Google Scholar 

  15. Miyaki, M., et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet. 17, 271–272 (1997).

    Article  CAS  Google Scholar 

  16. Kolodner, R., et al. Germline MSH6 mutation in colorectal cancer families. Cancer Res. 59, 5068–5074 (1999).

    CAS  PubMed  Google Scholar 

  17. Wijnen, J., et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nature Genet. 23, 142–144 (1999).

    Article  CAS  Google Scholar 

  18. Nicolaides, N.C. et al. Genomic organization of the human PMS2 gene family. Genomics 30, 195–206 ( 1995).

    Article  CAS  Google Scholar 

  19. Kondo, E., Horii, A. & Fukushige, S. The human PMS2L proteins do not interact with hMLH1, a major DNA mismatch repair protein. J. Biochem. (Tokyo). 125, 818–825 (1999).

    Article  CAS  Google Scholar 

  20. Raschle, M., et al. Identification of hMutLβ, a heterodimer of hMLH1 and hPMS1. J. Biol. Chem. 274, 32368– 32375 (1999).

    Article  CAS  Google Scholar 

  21. Sugihara, T., et al. Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. Proc. Natl Acad. Sci. USA 95, 15418–15423 (1998).

    Article  CAS  Google Scholar 

  22. Altschul, S., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  23. Flores-Rozas, H. & Kolodner, R.D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl Acad. Sci. USA 95, 12404–12409 (1998).

    Article  CAS  Google Scholar 

  24. Pang, Q., Prolla, T.A. & Liskay, R.M. Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol. Cell. Biol. 17, 4465–4473 (1997).

    Article  CAS  Google Scholar 

  25. Nicolaides, N.C. et al. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol. Cell. Biol. 18, 1635–1641 (1998).

    Article  CAS  Google Scholar 

  26. Vogelstein, B., et al. Allelotype of colorectal carcinomas. Science 244, 207–211 (1989).

    Article  CAS  Google Scholar 

  27. Jacoby, R.F. et al. Genetic analysis of colon cancer susceptibility in mice. Genomics 22, 381–387 ( 1994).

    Article  CAS  Google Scholar 

  28. Evans, J.T. et al. Genetics of colon carcinogenesis in mice treated with 1,2-dimethylhydrazine . Cancer Res. 37, 134–136 (1977).

    CAS  PubMed  Google Scholar 

  29. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  30. Risinger, J., et al. Single gene complementation of the hPMS2 defect in HEC-1-A endometrial carcinoma cells. Cancer Res. 58, 2978–2981 (1998).

    CAS  PubMed  Google Scholar 

  31. Glaab, W.E. Characterization of distinct human endometrial carcinoma cell lines deficient in mismatch repair that originated from a single tumor. J. Biol. Chem. 273, 26662–26669 ( 1998).

    Article  CAS  Google Scholar 

  32. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Moen, C.J., Groot, P.C., Hart, A.A., Snoek, M. & Demant, P. Fine mapping of colon tumor susceptibility (Scc) genes in the mouse, different from the genes known to be somatically mutated in colon cancer. Proc. Natl Acad. Sci. USA 93, 1082–1086 (1996).

    Article  CAS  Google Scholar 

  34. van Wezel, T., et al. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nature Genet. 14, 468– 470 (1996).

    Article  CAS  Google Scholar 

  35. Duckett, D.R. et al. Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl Acad. Sci. USA 93, 6443– 6447 (1996).

    Article  CAS  Google Scholar 

  36. Hawn, M.T. et al. Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res. 55, 3721–3725 (1995).

    CAS  PubMed  Google Scholar 

  37. Carethers, J.M. et al. Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N′-nitro-N-nitrosoguanidine. J. Clin. Invest. 98, 199–206 (1996).

    Article  CAS  Google Scholar 

  38. Andrew, S.E. et al. Tissues of MSH2-deficient mice demonstrate hypermutability on exposure to a DNA methylating agent. Proc. Natl Acad. Sci. USA 95, 1126–1130 ( 1998).

    Article  CAS  Google Scholar 

  39. Knight, J.C. et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nature Genet. 22, 145–150 (1999).

    Article  CAS  Google Scholar 

  40. Drazen, J.M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet. 22, 168–170 (1999).

    Article  CAS  Google Scholar 

  41. Dalgleish, R. Intronic polymorphisms and their association with human osteoporposis. Nucleic Acids Res. 25, 181–187 (1997).

    Article  CAS  Google Scholar 

  42. Bennett, S. & Todd, J. Genetic loci for non insulin dependent diabetes mellitus. Annu. Rev. Genet. 30, 343–370 (1996).

    Article  CAS  Google Scholar 

  43. Ryan, J., et al. KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J. Natl Cancer Inst. 79, 135– 137 (1987).

    Google Scholar 

  44. Drummond, H., et al. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc. Natl Acad. Sci. USA 94, 10144–10149 (1998).

    Article  Google Scholar 

  45. Marra, G., et al. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc. Natl Acad. Sci. USA 95, 8568–8573 (1998).

    Article  CAS  Google Scholar 

  46. Liu, B., et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nature Med. 2, 169–174 (1996).

    Article  CAS  Google Scholar 

  47. Thompson, J., et al. CLUSTALW alignment software. Nucleic Acids Res. 22, 4673–4680 ( 1994).

    Article  CAS  Google Scholar 

  48. Dayhoff, M., Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Bethesda, (1978).

    Google Scholar 

  49. Fitch, W. Construction of phylogenetic trees. Science 155, 279–284 (1967).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dutra for FISH analyses; D. Taczynski and B. Holdridge for mouse breeding; D. Poslinski, D. Miller, C. Hohman and J. Pazik for mouse husbandry; B. Vogelstein for pBKS MLH1, pCAR-IF and pCAR-OF plasmids; K. Yang for assistance with pathology; and B. Andersen, R. Kucherlapati, R. Kolodner, D. Cabin and G. Fischer for critical reading of this manuscript. This work was supported by intramural National Human Genome Research Institute funds, NIH grant CA62225 (R.M.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis S. Collins.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipkin, S., Wang, V., Jacoby, R. et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24, 27–35 (2000). https://doi.org/10.1038/71643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing