Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module

Abstract

The low-density lipoprotein receptor (LDLR) is responsible for the uptake of cholesterol-containing lipoprotein particles into cells1,2. The amino-terminal region of LDLR, which consists of seven tandemly repeated, 40-amino-acid, cysteine-rich modules (LDL-A modules), mediates binding to lipoproteins3,4. LDL-A modules are biologically ubiquitous domains, found in over 100 proteins in the sequence database5. The structure of ligand-binding repeat 5 (LR5) of the LDLR, determined to 1.7 å resolution by X-ray crystallography and presented here, contains a calcium ion coordinated by acidic residues that lie at the carboxy-terminal end of the domain and are conserved among LDL-A modules. Naturally occurring point mutations found in patients with the disease familial hypercholesterolaemia6 alter residues that directly coordinate Ca2+or that serve as scaffolding residues of LR5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of LR5.
Figure 2: Structure of LR5.
Figure 3: LR5 Ca2+coordination compared to ideal octahedral coordination.
Figure 4: Surface contours and charge density.

Similar content being viewed by others

References

  1. Goldstein, J. L. et al. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol 1, 1–39 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Brown, M. S. & Goldstein, J. L. Areceptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Esser, V. et al. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J. Biol. Chem. 26, 13282–13290 (1988).

    Google Scholar 

  4. Russell, D. W., Brown, M. S. & Goldstein, J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J. Biol. Chem. 264, 21782–21688 (1989).

    Google Scholar 

  5. Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  6. Goldstein, J. L., Hobbs, H. H. & Brown, M. S. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. S., Beandet, A. L., Sly, W. S. & Valle, D.) 1981–2030 (McGraw Hill, New York, 1995).

    Google Scholar 

  7. Daly, N. L. et al. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc. Natl Acad. Sci. USA 92, 6334–6338 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Daly, N. L., Djordjevic, J. T., Kroon, P. A. & Smith, R. Three-dimensional structure of the second cysteine-rich repeat from the human low-density lipoprotein receptor. Biochemistry 34, 14474–14481 (1995).

    Article  CAS  Google Scholar 

  9. Blacklow, S. C. & Kim, P. S. Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nature Struct. Biol. 3, 758–762 (1996).

    Article  CAS  Google Scholar 

  10. van Driel, I. R., Goldstein, J. L., Südhof, T. C. & Brown, M. S. First cysteine-rich repeat in ligand-binding domain of low density lipoprotein receptor binds Ca2+ and monoclonal antibodies, but not lipoproteins. J. Biol. Chem. 262, 17443–17449 (1987).

    CAS  PubMed  Google Scholar 

  11. Abbadi, A. et al. Involvement of side functions in peptide structures: the Asx turn. Occurrence and conformational aspects. J. Am. Chem. Soc. 113, 2729–2735 (1991).

    Article  CAS  Google Scholar 

  12. Südhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228, 815–822 (1985).

    Article  ADS  Google Scholar 

  13. Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Wilson, C. et al. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252, 1817–1822 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Ji, Z. -S., Fazio, S., Lee, Y. -L. & Mahley, R. W. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J. Biol. Chem. 269, 2764–2772 (1994).

    CAS  PubMed  Google Scholar 

  16. Innerarity, T. L., Pitas, R. E. & Mahley, R. W. Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. J. Biol. Chem. 254, 4186–4190 (1979).

    CAS  PubMed  Google Scholar 

  17. Otwinowski, Z. & Minor, W. Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  18. CCP4. The SERC (UK) Collaborative Computing Project No. 4A Suite of Programs for Protein Crystallography (SERC Daresbury Laboratory, Warringto, UK, Warringto 1979).

  19. Cowtan, K. D. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

  20. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  21. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  22. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  23. Brünger, A. T. X-PLOR Version 3.1. A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  24. Yamamoto, T. et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39, 27–38 (1984).

    Article  CAS  Google Scholar 

  25. Carson, M. & Bugg, C. E. Algorithm for ribbon models of proteins. J. Mol. Graph. 4, 121–122 (1986).

    Article  CAS  Google Scholar 

  26. McPhalen, C. A., Strynadka, N. C. J. & James, M. N. G. Calcium binding sites in proteins: a structural perspective. Adv. Prot. Chem. 42, 77–144 (1991).

    CAS  Google Scholar 

  27. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. J. Gamblin for technical advice and discussions. J.M.B. is a Whitehead Fellow and acknowledges support from the W. M. Keck Foundation. This research utilized the W. M. Keck Foundation X-ray Crystallography Facility at the Whitehead Institute, and was supported by an NIH grant (to R. D. Rosenberg) from the Program of Excellence in Molecular Biology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fass, D., Blacklow, S., Kim, P. et al. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388, 691–693 (1997). https://doi.org/10.1038/41798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41798

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing