Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion

Abstract

Rab3 is a neuronal GTP-binding protein that regulates fusion of synaptic vesicles and is essential for long-term potentiation of hippocampal mossy fibre synapses1,2,3,4,5. More than thirty Rab GTP-binding proteins are known to function in diverse membrane transport pathways, although their mechanisms of action are unclear. We have now identified a putative Rab3-effector protein called Rim. Rim is composed of an amino-terminal zinc-finger motif and carboxy-terminal PDZ and C2 domains. It binds only to GTP (but not to GDP)-complexed Rab3, and interacts with no other Rab protein tested. There is enrichment of Rab3 and Rim in neurons, where they have complementary distributions. Rab3 is found only on synaptic vesicles, whereas Rim is localized to presynaptic active zones in conventional synapses, and to presynaptic ribbons in ribbon synapses. Transfection of PC12 cells with the amino-terminal domains of Rim greatly enhances regulated exocytosis in a Rab3-dependent manner. We propose that Rim serves as a Rab3-dependent regulator of synaptic-vesicle fusion by forming a GTP-dependent complex between synaptic plasma membranes and docked synaptic vesicles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Domain structure of Rim.
Figure 2: Localization of Rim to synaptic plasma membranes by subcellular fractionation.
Figure 3: A, Localization of Rim in spinal-cord motor neurons.
Figure 4: Rab3-dependent regulation of Ca2+-dependent secretion in transfected PC12 cells.

Similar content being viewed by others

References

  1. Geppert, M.et al. The role of Rab3A in neurotransmitter release. Nature 369, 493–497 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Holz, R. W., Brondyk, W. H., Senter, R. A., Kuizon, L. & Macara, I. G. Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells. J. Biol. Chem. 269, 10229–10234 (1994).

    CAS  PubMed  Google Scholar 

  3. Johannes, L.et al. The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendrocrine cels. EMBO J. 13, 2029–2037 (1994).

    Article  CAS  Google Scholar 

  4. Geppert, M., Goda, Y., Stevens, C. F. & Südhof, T. C. Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Castillo, P. E., Janz, R., Südhof, T. C., Tzounopoulos, T., Malenka, R. C. & Nicoll, R. A. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590–593 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Burstein, E. S., Brondyk, W. H., Macara, I. G., Kaibuchi, K. & Takai, Y. Regulation of the GTPase cycle of the neuronally expressed Ras-like GTP-bindign protein Rab3A. J. Biol. Chem. 268, 22247–22250 (1993).

    CAS  PubMed  Google Scholar 

  7. Fischer von Mollard, G., Stahl, B., Khokhlatchev, A., Südhof, T. C. & Jahn, R. Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. J. Biol. Chem. 269, 10971–10974 (1994).

    CAS  PubMed  Google Scholar 

  8. Südhof, T. C. Function of Rab3A GDP/GTP exchange. Neuron 18, 519–522 (1997).

    Article  Google Scholar 

  9. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cel functions. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Nuoffer, C. & Balch, W. E. GTPases: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63, 949–990 (1994).

    Article  CAS  Google Scholar 

  11. Shirataki, H.et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell. Biol. 13, 2061–2068 (1993).

    Article  CAS  Google Scholar 

  12. Li, C.et al. Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C. Neuron 13, 885–898 (1994).

    Article  CAS  Google Scholar 

  13. Stahl, B., Chou, J. H., Li, C., Südhof, T. C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 15, 1799–1809 (1996).

    Article  CAS  Google Scholar 

  14. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian ras interacts directly with the serin/threonine kinase raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  15. Südhof, T. C. & Rizo, J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17, 379–388 (1996).

    Article  Google Scholar 

  16. Weisman, L. S. & Wickner, W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J. Biol. Chem. 267, 618–623 (1992).

    CAS  PubMed  Google Scholar 

  17. Yamamoto, A.et al. Novel PI(4)P 5-kinase homologue, Fablp, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6, 525–539 (1995).

    Article  CAS  Google Scholar 

  18. Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R. & Scheller, R. H. Hrs-2 is an ATPase implicated in Ca2+-regulated secretion. Nature 385, 826–829 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Sheng, M. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17, 575–578 (1996).

    Article  CAS  Google Scholar 

  20. Dowling, J. E. The Retina. An Approachable Part of the Brain(Belknap, Cambridge, MA, (1987)).

    Google Scholar 

  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual(Cold Spring Harbor Laboratory Press, New York, (1989)).

    Google Scholar 

  22. Hata, Y. & Südhof, T. C. Anovel ubiquitous form of munc18 interacts with multiple syntaxins. J. Biol. Chem. 270, 13022–13028 (1991).

    Article  Google Scholar 

  23. Guan, K. L. & Dixon, J. E. Eukaryotic proteins expressed in Escherischia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  24. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. Aflexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996).

    Article  CAS  Google Scholar 

  25. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. USA 89, 10915–10919 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347–349 (1995).

    Article  CAS  Google Scholar 

  27. Schmitz, F., Bechmann, M. & Drenckhahn, D. Purification of synaptic ribbons, structural components of the photoreceptor active zone complex. J. Neurosci. 15, 7109–7116 (1996).

    Article  Google Scholar 

  28. McMahon, H.et al. Cellubrevin: a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Ichtchenko, K.et al. Neuroligin 1: A splice-site specific ligand for β-neurexins. Cell 81, 435–443 (1995).

    Article  CAS  Google Scholar 

  30. Matsui, Y.et al. Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. J. Biol. Chem. 263, 11071–11074 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Janz, R. Jahn, M. Zerial and S. Butz for reagents, and J. L. Goldstein and M. S. Brown for advice and support. This work was partially supported by a grant from the HFSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Südhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Okamoto, M., Schmitz, F. et al. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997). https://doi.org/10.1038/41580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing