Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac excitation–contraction coupling

Abstract

Of the ions involved in the intricate workings of the heart, calcium is considered perhaps the most important. It is crucial to the very process that enables the chambers of the heart to contract and relax, a process called excitation–contraction coupling. It is important to understand in quantitative detail exactly how calcium is moved around the various organelles of the myocyte in order to bring about excitation–contraction coupling if we are to understand the basic physiology of heart function. Furthermore, spatial microdomains within the cell are important in localizing the molecular players that orchestrate cardiac function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ transport in ventricular myocytes.
Figure 2: Quantitative Ca2+ fluxes during excitation–contraction coupling.
Figure 3: Na+/Ca2+ exchange during an action potential.
Figure 4: Confocal images of Ca2+ sparks and waves.
Figure 5: Candidate mechanisms for activation of Ca2+ release from the sarcoplasmic reticulum.
Figure 6: β-Adrenergic receptor activation and phosphorylation targets relevant to excitation–contraction coupling.

Similar content being viewed by others

References

  1. Bers, D. M. Excitation–Contraction Coupling and Cardiac Contractile Force edn 2 (Kluwer Academic, Dordrecht, Netherlands, 2001).

    Google Scholar 

  2. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W. & Bers, D.M. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium–calcium exchange, inward rectifier potassium current and residual β-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001).

    CAS  PubMed  Google Scholar 

  3. Solaro, R. J. & Rarick, H. M. Troponin and tropomyosin—proteins that switch on and tune in the activity of cardiac myofilaments. Circ. Res. 83, 471–480 (1998).

    CAS  PubMed  Google Scholar 

  4. Moss, R. L. & Buck, S. H. in Handbook of Physiology (eds Page, E., Fozzard, H. A. & Solaro, R. J.) 420–454 (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  5. Fukuda, N., Sasaki, D., Ishiwata, S. & Kurihara, S. Length dependence of tension generation in rat skinned cardiac muscle. Circ. Res. 104, 1639–1645 (2001).

    CAS  Google Scholar 

  6. Bassani, J. W. M., Bassani, R. A. & Bers, D. M. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J. Physiol. 476, 279–293 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brandes, R. & Bers, D. M. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ. Res. 80, 82–87 (1997).

    CAS  PubMed  Google Scholar 

  8. Hove-Madsen, L., & Bers, D. M. Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circ. Res. 73, 820–828 (1993).

    CAS  PubMed  Google Scholar 

  9. Li, L., Chu, G., Kranias, E. G. & Bers, D. M. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am. J. Physiol. 274, H1335–H1347 (1998).

    CAS  PubMed  Google Scholar 

  10. Hasenfuss, G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc. Res. 37, 279–289 (1998).

    CAS  PubMed  Google Scholar 

  11. Delbridge, L. M., Bassani, J. W. M. & Bers, D. M. Steady-state twitch Ca2+ fluxes and cytosolic Ca2+ buffering in rabbit ventricular myocytes. Am. J. Physiol. 270, C192–C199 (1996).

    CAS  PubMed  Google Scholar 

  12. Trafford, A. W., Díaz, M. E., Negretti, N. & Eisner, D. A. Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ. Res. 81, 477–484 (1997).

    CAS  PubMed  Google Scholar 

  13. Peterson, B. Z., DeMaria, C. D. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    CAS  PubMed  Google Scholar 

  14. Zühlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  ADS  PubMed  Google Scholar 

  15. Scriven, D. R. L., Dan, P. & Moore, E. D. W. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys. J. 79, 2682–2691 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sipido, K. R., Callewaert, G. & Carmeliet, E. Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ. Res. 76, 102–109 (1995).

    CAS  PubMed  Google Scholar 

  17. Sham, J. S. K. et al. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. USA 95, 15096–15101 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puglisi, J. L., Yuan, W., Bassani, J. W. M. & Bers, D. M. Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature. Circ. Res. 85, e7–e16 (1999).

    CAS  PubMed  Google Scholar 

  19. Langer, G. A. & Peskoff, A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys. J. 70, 1169–1182 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zahradníková, A., Zahradník, I., Györke, I. & Györke, S. Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli. J. Gen. Physiol. 114, 787–798 (1999).

    PubMed  PubMed Central  Google Scholar 

  21. Fujioka, Y., Komeda, M. & Matsuoka, S. Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J. Physiol. 523, 339–351 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Egger, M. & Niggli, E. Paradoxical block of the Na+-Ca2+ exchanger by extracellular protons in guinea-pig ventricular myocytes. J. Physiol. 523, 353–366 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trafford, A. W., Díaz, M. E. O'., Neill, S. C. & Eisner, D. A. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J. Physiol. 488, 577–586 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Leblanc, N. & Hume, J. R. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376 (1990).

    ADS  CAS  PubMed  Google Scholar 

  25. Weber, C. R., Piacentino, V. III., Ginsburg, K. S. Houser, S. R. & Bers, D. M. Na/Ca exchange current and submembrane [Ca] during cardiac action potential. Circ. Res. (in the press).

  26. Dipla, K., Mattiello, J. A., Margulies, K. B., Jeevanandam, V. & Houser, S. R. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ. Res. 84, 435–444 (1999).

    CAS  PubMed  Google Scholar 

  27. Bassani, J. W. M., Yuan, W. & Bers, D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am. J. Physiol. 268, C1313–C1319 (1995).

    CAS  PubMed  Google Scholar 

  28. Shannon, T. R., Ginsburg, K. S. & Bers, D. M. Potentiation of fractional SR Ca release by total and free intra-SR Ca concentration. Biophys. J. 78, 334–343 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sitsapesan, R. & Williams, A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J. Membr. Biol. 137, 215–226 (1994).

    CAS  PubMed  Google Scholar 

  30. Lukyanenko, V., Györke, I. & Györke, S. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflügers Arch. 432, 1047–1054 (1996).

    CAS  PubMed  Google Scholar 

  31. Brittsan, A. G. & Kranias, E. G. Phospholamban and cardiac contractile function. J. Mol. Cell. Cardiol. 32, 2131–2139 (2000).

    CAS  PubMed  Google Scholar 

  32. Fruen, B. R., Bardy, J. M., Byrem, T. M., Strasburg, G. M. & Louis, C. F. Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am. J. Physiol. 279, C724–C733 (2000).

    CAS  Google Scholar 

  33. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    CAS  PubMed  Google Scholar 

  34. Marx, S. O. et al. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J. Cell Biol. 153, 699–708 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyers, M. B. et al. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J. Biol. Chem. 273, 18930–18935 (1998).

    CAS  PubMed  Google Scholar 

  36. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).

    CAS  PubMed  Google Scholar 

  37. Franzini-Armstrong, C., Protasi, F. & Ramesh, V. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys. J. 77, 1528–1539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993).

    ADS  CAS  PubMed  Google Scholar 

  39. Wier, W. G. & Balke, C. W. Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation-contraction coupling in normal heart muscle. Circ. Res. 85, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  40. Bridge, J. H. B., Ershler, P. R. & Cannell, M. B. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. J. Physiol. 518, 469–478 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lukyanenko, V. et al. Inhibition of Ca2+ sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophys. J. 79, 1273–1284 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cannell, M. B., Cheng, H. & Lederer, W. J. The control of calcium release in heart muscle. Science 268, 1045–1049 (1995).

    ADS  CAS  PubMed  Google Scholar 

  43. López-López, J. R., Shacklock, P. S., Balke, C. W. & Wier, W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268, 1042–1045 (1995).

    ADS  PubMed  Google Scholar 

  44. Sham, J. S. K. et al. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. USA 95, 15096–15101 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sipido, K. R., Carmeliet, E. & van de Werf, F. T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J. Physiol. 508, 439–451 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, Z. F. & January, C. T. Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys. J. 74, 1830–1839 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levesque, P. C., Leblanc, N. & Hume, J. R. Release of calcium from guinea pig cardiac sarcoplasmic reticulum induced by sodium-calcium exchange. Cardiovasc. Res. 28, 370–378 (1994).

    CAS  PubMed  Google Scholar 

  48. Lipp, P. & Niggli, E. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J. Physiol. 474, 439–446 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sham, J. S. K., Cleemann, L. & Morad, M. Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+-Ca2+ exchange. Science 255, 850–853 (1992).

    ADS  CAS  PubMed  Google Scholar 

  50. Bouchard, R. A., Clark, R. B. & Giles, W. R. Role of sodium-calcium exchange in activation of contraction in rat ventricle. J. Physiol. 472, 391–413 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sipido, K. R., Carmeliet, E., & Pappano, A. Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. J. Physiol. 489, 1–17 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Levi, A. J., Spitzer, K. W., Kohmoto, O. & Bridge, J. H. B. Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes. Am. J. Physiol. 266, H1422–H1433 (1994).

    CAS  PubMed  Google Scholar 

  53. Litwin, S. E., Li, J. & Bridge, J. H. B. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys. J. 75, 359–371 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sipido, K. R., Maes, M. & van de Werf, F. Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum—a comparison between L-type Ca2+ current and reverse-mode Na+-Ca2+ exchange. Circ. Res. 81, 1034–1044 (1997).

    CAS  PubMed  Google Scholar 

  55. Lemaire, S., Piot, C., Seguin, J., Nargeot, J. & Richard, S. Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Recept. Channels 3, 71–81 (1995).

    CAS  PubMed  Google Scholar 

  56. Aggarwal, R., Shorofsky, S. R., Goldman, L. & Balke, C. W. Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J. Physiol. 505, 353–369 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Santana, L. F., Gómez, A. M. & Lederer, W. J. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279, 1027–1033 (1998).

    ADS  CAS  PubMed  Google Scholar 

  58. Cruz, J. D. S. et al. Whether “slip-mode conductance” occurs. Science 284, 711a (1999).

    ADS  Google Scholar 

  59. Nuss, H. B. & Marbán, E. Whether “slip-mode conductance” occurs. Science 284, 711a (1999).

    ADS  Google Scholar 

  60. Chandra, R., Chauhan, V. S., Starmer, C. F. & Grant, A. O. β-Adrenergic action on wild-type and KPQ mutant human cardiac Na+ channels: shift in gating but no change in Ca2+:Na+ selectivity. Cardiovasc. Res. 42, 490–502 (1999).

    CAS  PubMed  Google Scholar 

  61. DelPrincipe, F., Egger, M., Niggli, E. L-type Ca2+ current as the predominant pathway of Ca2+ entry during INa activation in β-stimulated cardiac myocytes. J. Physiol. 527, 455–466 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferrier, G. R. & Howlett, S. E. Cardiac excitation–contraction coupling: role of membrane potential in regulation of contraction. Am. J. Physiol. (Heart Circ. Physiol.) 280, H1928–H1944 (2001).

    CAS  Google Scholar 

  63. Piacentino, V. III., Dipla, K., Gaughan, J. P. & Houser, S. R. Voltage-dependent Ca2+ release from the SR of feline ventricular myocytes is explained by Ca2+-induced Ca2+ release. J. Physiol. 523, 533–548 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Perez, P. J., Ramos-Franco, J., Fill, M. & Mignery, G. A. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J. Biol. Chem. 272, 23961–23969 (1997).

    CAS  PubMed  Google Scholar 

  65. Lipp, P. et al. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr. Biol. 10, 939–942 (2000).

    CAS  PubMed  Google Scholar 

  66. Kentish, J. C. et al. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3 . Am. J. Physiol. 258, H610–H615 (1990).

    CAS  PubMed  Google Scholar 

  67. Brown, J. H. & Jones, L. G. in Phosphoinositides and Receptor Mechanisms (ed. Putney, J. W. Jr) 245–270 (Alan R. Liss, New York, 1986).

    Google Scholar 

  68. Poggioli, J., Sulpice, J. C. & Vassort, G. Inositol phosphate production following α1-adrenergic, muscarinic, or electrical stimulation in isolated rat heart. FEBS Lett. 206, 292–298 (1986).

    CAS  PubMed  Google Scholar 

  69. Endoh, M. Cardiac α1-adrenoceptors that regulate contractile function: subtypes and subcellular signal transduction mechanisms. Neurochem. Res. 21, 217–229 (1996).

    CAS  PubMed  Google Scholar 

  70. Gambassi, G., Spurgeon, H. A., Ziman, B. D., Lakatta, E. G. & Capogrossi, M. C. Opposing effects of α1-adrenergic receptor subtypes on Ca2+ and pH homeostasis in rat cardiac myocytes. Am. J. Physiol. 274, H1152–H1162 (1998).

    CAS  PubMed  Google Scholar 

  71. Ramirez, M. T., Zhao, X. L., Schulman, H. & Brown, J. H. The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J. Biol. Chem. 272, 31203–31208 (1997).

    CAS  PubMed  Google Scholar 

  72. Stern, M. D. Theory of excitation–contraction coupling in cardiac muscle. Biophys. J. 63, 497–517 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lukyanenko, V., Wiesner, T. F. & Györke, S. Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. J. Physiol. 507, 667–677 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Marx, S. O. et al. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 88, 1151–1158 (2001).

    CAS  PubMed  Google Scholar 

  75. Satoh, H., Blatter, L. A. & Bers, D. M. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am. J. Physiol. 272, H657–H668 (1997).

    CAS  PubMed  Google Scholar 

  76. Fabiato, A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 189–246 (1985).

    CAS  PubMed  Google Scholar 

  77. Schiefer, A., Meissner, G. & Isenberg, G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca2+-release channels. J. Physiol. 489, 337–348 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sitsapesan, R., Montgomery, R. A. P. & Williams, A. J. New insights into the gating mechanisms of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circ. Res. 77, 765–772 (1995).

    CAS  PubMed  Google Scholar 

  79. Györke, S. & Fill, M. Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart. Science 260, 807–809 (1993).

    ADS  PubMed  Google Scholar 

  80. Valdivia, H. H., Kaplan, J. H., Ellis-Davies, G. C. R. & Lederer, W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267, 1997–2000 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, L., DeSantiago, J., Chu, G., Kranias, E. G. & Bers, D. M. Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation. Am. J. Physiol. 278, H769–H779 (2000).

    CAS  Google Scholar 

  82. Kentish, J. C. et al. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88, 1059–1065 (2001).

    CAS  PubMed  Google Scholar 

  83. Li, Y. & Bers, D. M. Protein kinase A phosphorylation of the ryanodine receptor does not alter Ca sparks in permeabilized mouse ventricular myocyte. Circulation 104, II-131 (2001).

    Google Scholar 

  84. Viatchenko-Karpinski, S. & Gyorke, S. Modulation of the Ca2+-induced Ca2+ release cascade by β-adrenergic stimulation in rat ventricular myocytes. J. Physiol. 533, 837–848 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Song, L. S. et al. β-Adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes. Circ. Res. 88, 794–801 (2001).

    CAS  PubMed  Google Scholar 

  86. Ginsburg, K. S. & Bers, D. M. Isoproterenol does not increase the intrinsic gain of cardiac excitation–contraction coupling (ECC). Biophys. J. 80, 590a (2001).

  87. Eisner, D. A., Choi, H. S., Díaz, M. E., O'Neill, S. C. & Trafford, A. W. Integrative analysis of calcium cycling in cardiac muscle. Circ. Res. 87, 1087–1094 (2000).

    CAS  PubMed  Google Scholar 

  88. Davare, M. A. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav 1.2. Science 293, 298–101 (2001).

    Google Scholar 

  89. Bers, D. M. & Ziolo, M. T. When is cAMP not cAMP? Effects of compartmentalization. Circ. Res. 89, 373–375 (2001).

    CAS  PubMed  Google Scholar 

  90. Kuschel, M. et al. β2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 99, 2458–2465 (1999).

    CAS  PubMed  Google Scholar 

  91. Rybin, V. O., Xu, X. & Steinberg, S. F. Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ. Res. 84, 980–988 (1999).

    CAS  PubMed  Google Scholar 

  92. Vila Petroff, M. G., Egan, J. M., Wang, X. & Sollott, S. J. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ. Res. 89, 445–452 (2001).

    CAS  PubMed  Google Scholar 

  93. Aprigliano, O., Rybin, V. O., Pak, E., Robinson, R. B. & Steinberg, S. F. β1- and β2-adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am. J. Physiol. 272, H2726–H2735 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Bers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bers, D. Cardiac excitation–contraction coupling. Nature 415, 198–205 (2002). https://doi.org/10.1038/415198a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415198a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing