Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor

Abstract

The mouse Brachyury (T) gene is the prototype of a growing family of so-called T-box genes which encode transcriptional regulators and have been identified in a variety of invertebrates and vertebrates, including humans1,2,3,4,5,6. Mutations in Brachyury and other T-box genes result in drastic embryonic phenotypes, indicating that T-box gene products are essential in tissue specification, morphogenesis and organogenesis7,8,9,10,11. The T-box encodes a DNA-binding domain of about 180 amino-acid residues, the T domain12. Here we report the X-ray structure of the T domain from Xenopus laevis2 in complex with a 24-nucleotide palindromic DNA duplex. We show that the protein is bound as a dimer, interacting with the major and the minor grooves of the DNA. A new type of specific DNA contact is seen, in which a carboxy-terminal helix is deeply embedded into an enlarged minor groove without bending the DNA. Hydrophobic interactions and an unusual main-chain carbonyl contact to a guanine account for sequence-specific recognition in the minor groove by this helix. Thus the structure of this T domain complex with DNA reveals a new way in which a protein can recognize DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of the 226 amino-terminal residues of T Xlaevis (Xbra)2 used for co-crystallization aligned with T mouse (T)1, TbxT chick (TbxT)5, TBX5 human (TBX5/HOS)11, Tbx6 mouse (Tbx6)4, eomesodermin (eomes)6 and optomotor-blind Drosophila (omb)10.
Figure 2: Ribbon diagram of the T-domain dimer bound to DNA.
Figure 3: Ribbon diagram of the T-domain dimer bound to DNA.
Figure 4: DNA recognition by the T domain.
Figure 5: DNA recognition by the T domain.
Figure 6: DNA recognition by the T domain.

Similar content being viewed by others

References

  1. Herrmann, B. G. The mouse Brachyury gene. Semin. Dev. Biol. 6, 385–394 (1995).

    Article  CAS  Google Scholar 

  2. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  3. Holland, P. W. H., Koschorz, B., Holland, L. Z. & Herrmann, B. G. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291 (1995).

    CAS  PubMed  Google Scholar 

  4. Agulnik, S. I. et al. Evolution of mouse T-box genes by tandem duplication and cluster dispersion. Genetics 144, 249–254 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Knezevic, V., De Santo, R. & Mackem, S. Two novel chick T-box genes related to mouse Brachyury are expressed in different non-overlapping mesodermal domains during gastrulation. Development 124, 411–419 (1997).

    CAS  PubMed  Google Scholar 

  6. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).

    Article  CAS  Google Scholar 

  7. Chesley, P. Development of the short-tailed mutant in the house mouse. J. Exp. Zool. 70, 429–435 (1935).

    Article  Google Scholar 

  8. Kispert, A., Herrmann, B. G., Leptin, M. & Reuter, R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium and Locusta. Genes Dev. 8, 2137–2150 (1994).

    Article  CAS  Google Scholar 

  9. Schulte-Merker, S. The zebrafish no tail gene. Semin. Dev. Biol. 6, 411–416 (1995).

    Article  Google Scholar 

  10. Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Li, Q. Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  Google Scholar 

  12. Kispert, A. & Herrmann, B. G. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 3211–3220 (1993).

    Article  CAS  Google Scholar 

  13. Kispert, A., Koschorz, B. & Herrmann, B. G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763–4772 (1995).

    Article  CAS  Google Scholar 

  14. Diederichs, K. Structural superposition of proteins with unknown alignment and detection of topological similarity using a six-dimensional search algorithm. Proteins 23, 187–195 (1995).

    Article  CAS  Google Scholar 

  15. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  16. Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373, 311–317 (1995).

    Article  ADS  Google Scholar 

  17. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Burley, S. K. The TATA box binding protein. Curr. Opin. Struct. Biol. 6, 69–75 (1996).

    Article  CAS  Google Scholar 

  19. Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan, R. G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by α helices. Science 266, 763–770 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Lewis, M. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271, 1247–1254 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Love, J. J. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

  23. Rice, P. A., Yang, S.-W., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50 760–776 (1994).

    Google Scholar 

  26. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Brünger, A. T. X-PLOR Version 3.1: A System for X-ray crystallography and NMR(Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  28. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  ADS  Google Scholar 

  29. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Carson, M. RIBBONS 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Thompson (EMBL, Grenoble Outstation) for access and support at beamline BM14, P. Pattison for access and support at BM1 at the European Synchrotron Radiation Facility (ESRF, Grenoble), R. Eritja (EMBL, Heidelberg) for oligonucleotide synthesis, B. Kazimierczak and B. Koschorz for technical assistance, J. Brickman for initiating our interest in the structure determination project, and colleagues at the EMBL Grenoble for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph W. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Herrmann, B. Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389, 884–888 (1997). https://doi.org/10.1038/39929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39929

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing