Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanism for an inherited cardiac arrhythmia

Abstract

IN the congenital long-QT syndrome, prolongation of the cardiac action potential occurs by an unknown mechanism1,2 and predisposes individuals to syncope and sudden death as a result of ventricular arrhythmias3. Genetic heterogeneity has been demonstrated for autosomal dominant long-QT syndrome by the identification of multiple distinct loci4,5, and associated mutations in two candidate genes have recently been reported6,7. One form of hereditary long QT (LQT3) has been linked to a mutation7 in the gene encoding the human heart voltage-gated sodium-channel α-subunit (SCN5A on chromosome 3p21)8. Here we characterize this mutation using heterologous expression of recombinant human heart sodium channels. Mutant channels show a sustained inward current during membrane depolarization. Single-channel recordings indicate that mutant channels fluctuate between normal and non-inactivating gating modes. Persistent inward sodium current explains prolongation of cardiac action potentials, and provides a molecular mechanism for this form of congenital long-QT syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atwell, D. & Lee, J. A. Lancet I, 1136–1139 (1988).

    Article  Google Scholar 

  2. Schwartz, P. J., Bonazzi, O., Locati, E., Napolitano, C. & Sala, S. Ann. N.Y. Acad. Sci. 644, 112–141 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Moss, A. J. et al. Circulation 84, 1136–1144 (1991).

    Article  CAS  Google Scholar 

  4. Keating, M. et al. Science 252, 704–706 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Jiang, C. et al. Nature Genet. 8, 141–147 (1994).

    Article  CAS  Google Scholar 

  6. Curran, M. E. et al. Cell 80, 795–803 (1995).

    Article  CAS  Google Scholar 

  7. Wang, Q. et al. Cell 80, 805–811 (1995).

    Article  CAS  Google Scholar 

  8. George, A. L. et al. Cytogenet. Cell Genet. 68, 67–70 (1995).

    Article  CAS  Google Scholar 

  9. Patton, D. E., West, J. W., Catterall, W. A. & Goldin, A. L. Proc. natn. Acad. Sci. U.S.A. 89, 10905–10909 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Patlak, J. B. & Ortiz, M. J. gen. Physiol. 87, 305–326 (1986).

    Article  CAS  Google Scholar 

  11. Alzheimer, C., Schwindt, P. C. & Crill, W. E. J. Neurosci. 13, 660–673 (1993).

    Article  CAS  Google Scholar 

  12. Nilius, B. Biophys. J. 53, 857–862 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Ju, Y.-K., Saint, D. A. & Gage, P. W. Proc. R. Soc. Lond. B256, 163–168 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Kiyosue, T. & Arita, M. Circ. Res. 64, 389–397 (1989).

    Article  CAS  Google Scholar 

  15. Stühmer, W. et al. Nature 339, 597–603 (1989).

    Article  ADS  Google Scholar 

  16. West, J. W. et al. Proc. natn. Acad. Sci. U.S.A. 89, 10910–10914 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Carmeliet, E. Eur. Heart. J. 14 (suppl. H), 3–13 (1993).

    Article  CAS  Google Scholar 

  18. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. Cell 81, 299–307 (1995).

    Article  CAS  Google Scholar 

  19. Higuchi, R. in PCR Technology (ed. Erlich, H. A.) 61–70 (Stockton, New York, 1989).

    Book  Google Scholar 

  20. Gellens, M. E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 554–558 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Makita, N., Bennett, P. B. Jr & George, A. L. Jr J. biol. Chem. 269, 7571–7578 (1994).

    CAS  PubMed  Google Scholar 

  22. Methfessel, C. et al. Pflügers Arch. 407, 577–588 (1986).

    Article  CAS  Google Scholar 

  23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  24. Valenzuela, C. & Bennett, P. B. Biophys. J. 67, 161–171 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Patlak, J. Physiol. Rev. 71, 1047–1076 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, P., Yazawa, K., Makita, N. et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995). https://doi.org/10.1038/376683a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376683a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing