Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An atomistic model for stepped diamond growth

Abstract

THE growth of many crystalline materials occurs through lateral propagation of steps over the surface1–3. A stepped texture is also characteristic of diamond grown by chemical vapour deposition (CVD)4–10. Diffusion of atoms on the surface is usually held responsible for the stepped growth of metals, but it has been thought11–14 that the stronger bonding of adatoms should prevent this mechanism from operating in the case of diamond. Recent experiments15 have, however, indicated that surface diffusion can take place during diamond growth. We have recently shown theoretically16 that bridging methylene (CH2) groups on the {100} plane of diamond growing in the presence of hydrogen can migrate in a manner equivalent to surface diffusion. Here we show that this theoretical picture can be developed into an atomistic model that accounts for stepped growth of diamond. The stepped pattern can be understood in terms of the formation of surface-bound species from the gaseous precursors, followed by their migration by means of a series of surface chemical reactions involving covalent bond breaking and formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morrison, S. R. The Chemical Physics of Surfaces (Plenum, New York, 1990).

    Book  Google Scholar 

  2. Harris, S. J. Cryst. Growth 97, 319–323 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Kandel, D. & Weeks, J. D. Phys. Rev. Lett. 72, 1678–1681 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Fedosayev, D. V., Deryagin, B. V. & Varasavskaja, I. G. Surf. Coatings Technol. 38, 9–122 (1989).

  5. Hirabayashi, K., Kurihara, N. I., Ohtake, N. & Yoshikawa, M. Jap. J. appl. Phys. 31, 355–360 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Lu, Z. P., Heberlein, J. & Pfender, E. Plasma Chem. Plasma Process. 12, 55–69 (1992).

    Article  CAS  Google Scholar 

  7. Okada, K., Komatsu, S., Ishigaki, T., Matsumoto, S. & Moriyoshi, Y. Appl. Phys. Lett. 60, 959–961 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Ravi, K. V. J. Mater. Res. 7, 384–393 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Sun, B., Zhang, X. & Lin, Z. Phys. Rev. B47, 9816–9824 (1993).

    Article  ADS  CAS  Google Scholar 

  10. van Enckevort, W. J. P. in Synthetic Diamond: Emerging CVD Science and Technology (eds Spear, K. E. & Dismukes, J. P.) 307–353 (Wiley, New York, 1994).

    Google Scholar 

  11. Harris, S. J. & Goodwin, D. G. J. phys. Chem. 97, 23–28 (1993).

    Article  CAS  Google Scholar 

  12. Coltrin, M. E. & Dandy, D. S. J. appl. Phys. 74, 5803–5820 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Zhu, M., Hauge, R. H., Margrave, J. L. & D'Evelyn, M. P. in Proc. 3rd int. Symp. on Diamond Materials (eds Dismukes, J. P. & Ravi, K. V.) 138–145 (Electrochemical Soc., Pennington, New Jersey, 1993).

    Google Scholar 

  14. Alfonso, D. R., Ulloa, S. E. & Brenner, D. W. Phys. Rev. B49, 4948–4953 (1994).

    Article  ADS  CAS  Google Scholar 

  15. van Enckevort, W. J. P. et al. Diamond Related Mater. 2, 997–1003 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Skokov, S., Weiner, B. & Frenklach, M. J. phys. Chem. 98, 7073–7082 (1994).

    Article  CAS  Google Scholar 

  17. Skokov, S., Weiner, B. & Frenklach, M. J. phys. Chem. 98, 8–11 (1994).

    Article  CAS  Google Scholar 

  18. Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  19. Stewart, J. J. P. J. comput. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  20. Dewar, M. J. S. Int. J. Quant. Chem. 44, 427–447 (1992).

    Article  CAS  Google Scholar 

  21. Angus, J. C. & Hayman, C. C. Science 241, 913–921 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Specht, E. D., Clausing, R. E. & Heatherly, L. J. Cryst. Growth 114, 38–46 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Garrison, B. J., Dawnkaski, E. J., Srivastava, D. & Brenner, D. W. Science 255, 835–838 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenklach, M., Skokov, S. & Weiner, B. An atomistic model for stepped diamond growth. Nature 372, 535–537 (1994). https://doi.org/10.1038/372535a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372535a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing