Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas

Abstract

THE pituitary hormone thyrotropin stimulates the function, expression of differentiation and growth of thyrocytes by cyclic AMP-dependent mechanisms1–3. Tissue hyperplasia and hyperthyroidism are therefore expected to result when activation of the adenylyl cyclase–cAMP cascade is unregulated. This is observed in several situations4,5, including when somatic mutations impair the GTPase activity of the G protein G (refs 6, 7). Such a mechanism is probably responsible for the development of a minority of monoclonal hyperfunctioning thyroid adenomas6,8,9. Here we identify somatic mutations in the carboxv-terminal portion of the third cytoplasmic loop of the thyrotropin receptor in three out of eleven hyperfunctioning thyroid adenomas. These mutations are restricted to tumour tissue and involve two different residues (aspartic acid at position 619 to glycine in two cases, and alanine at position 623 to isoleucine in one case). The mutant receptors confer constitutive activation of adenylyl cyclase when tested by transfection in COS cells. This shows that G-protein-coupled receptors are susceptible to constitutive activation by spontaneous somatic mutations10,11 and may thus behave as proto-oncogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dumont, J. E., Vassart, G. & Refetoff, S. in The Metabolic Basis of Inherited Diseases (ed. Scriver C.R.) 1843–1879 (McGraw-Hill, USA, 1989).

    Google Scholar 

  2. Dumont, J. E., Lamy, F., Roger, P. & Maenhaut, C. Physiol. Rev. 72, 667–697 (1992).

    Article  CAS  Google Scholar 

  3. Dumont, J. E., Jauniaux, J. C. & Roger, P. P. Trends biochem. Sci. 14, 67–71 (1989).

    Article  CAS  Google Scholar 

  4. Weintraub, B. D., Gershengorn, M. C., Kourides, I. A. & Fein, H. Ann. intern. Med. 95, 339–351 (1981).

    Article  Google Scholar 

  5. Zakarija, M. & McKenzie, J. M. Exp. clin. Endocr. 97, 165–169 (1991).

    Article  CAS  Google Scholar 

  6. Lyons, J. et al. Science 249, 655–659 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Weinstein, L. S. et al. New Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  Google Scholar 

  8. O'Sullivan, C., Barton, C. M., Staddon, S. L., Brown, C. L. & Lemoine, N. R. Molec. Carcinog. 4, 345–349 (1991).

    Article  CAS  Google Scholar 

  9. Suarez, H. G. et al. Oncogene 6, 677–679 (1991).

    CAS  PubMed  Google Scholar 

  10. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G. & Lefkowitz, R. J. J. biol. Chem. 267, 1430–1433 (1992).

    Article  CAS  Google Scholar 

  11. Allen, L. F., Lefkowitz, R. J., Caron, M. G. & Cotecchia, S. Proc. natn. Acad. Sci. U.S.A. 88, 11354–11358 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Landis, C. A. et al. Nature 340, 692–696 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Van Sande, J. et al. J. clin. Endocr. Metab. 50, 776–785 (1980).

    Article  CAS  Google Scholar 

  14. Van Sande, J. et al. J. clin. Endocr. Metab. 66, 570–579 (1988).

    Article  CAS  Google Scholar 

  15. Thomas, G. A., Williams, D. & Williams, E. D. Am. J. Path. 134, 141–151 (1989).

    CAS  PubMed  Google Scholar 

  16. Kosugi, S. J. biol. Chem. 267, 24153–24156 (1992).

    Article  CAS  Google Scholar 

  17. Strosberg, A. D. Eur. J. Biochem. 196, 1–10 (1991).

    Article  CAS  Google Scholar 

  18. O'Dowd, B. F. et al. J. biol. Chem. 263, 15985–15992 (1988).

    Article  CAS  Google Scholar 

  19. Ruvkun, G. Nature 360, 711–712 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Robbins, L. S. et al. Cell 72, 827–834 (1993).

    Article  CAS  Google Scholar 

  21. Libert, F. et al. Biochem. biophys. Res. Commun. 165, 1250–1255 (1989).

    Article  CAS  Google Scholar 

  22. Christophe, D. et al. Molec. cell Endocr. 64, 5–18 (1989).

    Article  CAS  Google Scholar 

  23. Brooker, G., Harper, J. F., Terasaki, W. L. & Moylan, R. D. Adv. Cyclic Nucleotide Res. 10, 1–33 (1979).

    CAS  PubMed  Google Scholar 

  24. Berridge, M. J. Biochem. J. 212, 849–858 (1983).

    Article  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  26. Vassart, G. et al. Science 235, 683–684 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parma, J., Duprez, L., Sande, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651 (1993). https://doi.org/10.1038/365649a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365649a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing