Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons

Abstract

VOLTAGE-GATED potassium (K+) channels display a wide variety of conductances and gating properties in vivo1–3. This diversity can be attributed not only to the presence of many K+-channel gene products, but also to the possibility that different K+-channel sub-units co-assemble to form heteromultimeric channels in vivo. When expressed in Xenopus oocytes or transfected cells, K+-channel polypeptides assemble to form tetramers4. Certain combinations of Shaker-like subunits have been shown to co-assemble, forming heteromultimeric channels with distinct properties5–7. It is not known, however, whether K+ -channel polypeptides form hetero- multimeric channels in vivo. Here we describe the co-localization of two Shaker-like voltage-gated K+-channel proteins, mKvl.l and mKvl.2, in the juxtaparanodal regions of nodes of Ranvier in mye-linated axons, and in terminal fields of basket cells in mouse cerebellum. We also show that mKvl.l and mKvl.2 can be co-immunoprecipitated with specific antibodies that recognize only one of them. These data indicate that the two polypeptides occur in subcellular regions where rapid membrane repolarization may be important and that they form heteromultimeric channels in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1991).

    Google Scholar 

  2. Rudy, B. Neuroscience 25, 729–749 (1988).

    Article  CAS  Google Scholar 

  3. Jan, L. Y. & Jan, Y. N. Cell 56, 13–25 (1989).

    Article  CAS  Google Scholar 

  4. MacKinnon, R. Nature 350, 232–234 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. Nature 345, 530–534 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Ruppersberg, J. P. et al. Nature 345, 535–537 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Christie, M. J., North, R. A., Osborne, P. B., Douglass, J. & Adelman, J. P. Neuron 2, 405–411 (1990).

    Article  Google Scholar 

  8. Tempel, B. L., Jan, Y. N. & Jan, L. Y. Nature 332, 837–839 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Chandy, K. G. et al. Science 247, 973–975 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Palay, S. L. & Chan-Palay, V. Cerebeller Cortex (Springer, Heidelberg, 1974).

    Book  Google Scholar 

  11. Oertel, W. H., Schmechel, D. E., Mugnaini, E., Tappaz, M. L. & Kopin, I. J. Neuroscience 6, 2715–2735 (1981).

    Article  CAS  Google Scholar 

  12. Black, J. A., Waxman, S. G., Friedman, B., Elmer, L. W. & Angelides, K. J. Glia 2, 353–369 (1989).

    Article  CAS  Google Scholar 

  13. Joe, E. & Angelides, K. Nature 356, 333–335 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Hopkins, W. F. & Tempel, B. L. Neurosci. Abstr. 19, 707 (1993).

    Google Scholar 

  15. Bosma, M. M., Wang, H. & Tempel, B. L. Neurosci. Abstr. 19, 712 (1993).

    Google Scholar 

  16. Wilson, G. F. & Chiu, S. Y. J. Neurosci. 10, 3263–3274 (1990).

    Article  CAS  Google Scholar 

  17. Roper, J. & Schwartz, J. R. J. Physiol., Lond. 416, 93–110 (1989).

    Article  CAS  Google Scholar 

  18. Safronov, B. V., Kampe, K. & Vogel, W. J. Physiol., Lond. 460, 675–691 (1993).

    Article  CAS  Google Scholar 

  19. Li, M., Jan, Y. N. & Jan, L. Y. Science 257, 1225–1230 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Hopkins, W. F., Demas, V. & Tempel, B. L. J. Neurosci. (in the press).

  21. Covarrubias, M., Wei, A. & Salkoff, L. Neuron 7, 763–773 (1991).

    Article  CAS  Google Scholar 

  22. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Press, New York, 1988).

    Google Scholar 

  23. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, New York, 1992).

    Google Scholar 

  24. Sternberger, L. A. Immunocytochemistry (Wiley, New York, 1979).

    Google Scholar 

  25. Kunkel, D. D., Scharfman, H. E., Schild, D. L. & Schwartzkroin, P. A. Microsc. Res. Tech. 24, 67–84 (1993).

    Article  CAS  Google Scholar 

  26. Itoh, K. et al. Brain Res. 175, 341–346 (1979).

    Article  CAS  Google Scholar 

  27. Rehm, H. & Lazdunski, M. Proc. natn. Acad. Sci. U.S.A. 85, 4919–4923 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Kunkel, D., Martin, T. et al. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365, 75–79 (1993). https://doi.org/10.1038/365075a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365075a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing