Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allele-specific replication timing of imprinted gene regions

Abstract

SEVERAL lines of evidence suggest that the paternal and maternal genomes may have different expression patterns in the developing organism1 and this has been confirmed by the identification of endogenous genes that are parentally imprinted in the mouse2–5. Little is known about the precise mechanisms involved in the process, but structural differences between the two alleles must somehow provide cis-acting signals for directing parental-specific transcription. Cell-cycle replication time is one parameter that has been shown to be associated with both tissue-specific gene expression6,7 and the allele-specific transcription patterns of the X chromosomes in female cells8. For this reason we have examined the replication timing patterns for the chromosomal regions containing the imprinted genes Igf2, Igf2r, H19 and Snrpn in the mouse. At all of these sites, and their corresponding positions in the human genome, the two homologous alleles replicate asynchronously and it is always the paternal allele that is early-replicating. Thus imprinted genes appear to be embedded in large DNA domains with differential replication patterns, which may provide a structural imprint for parental identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solter, D. Rev. Genet. 22, 127–146 (1988).

    Article  CAS  Google Scholar 

  2. Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. Nature 349, 84–87 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Nature 351, 153–155 (1991).

    Article  ADS  CAS  Google Scholar 

  4. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  5. Leff, S. E. et al. Nature Genet. 2, 1–5 (1992).

    Article  Google Scholar 

  6. Goldman, M. A., Holmquist, G. P., Gray, M. C., Caston, L. A. & Nag, A. Science 224, 686–692 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Holmquist, G. P. Am. J. hum. Genet. 40, 151–173 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Takagi, N. & Oshimura, M. Expl Cell Res. 78, 127–135 (1973).

    Article  CAS  Google Scholar 

  9. Selig, S., Okumura, K., Ward, D. C. & Cedar, H. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  Google Scholar 

  10. Ozcelik, T. et al. Nature Genet. 2, 2–6 (1992).

    Article  Google Scholar 

  11. Nicholls, R. D., Rinchik, E. M. & Driscoll, D. J. in Seminars in Developmental Biology (eds Surani, M. A. & Reik, W.) 139–152 (Academic, London, 1992).

    Google Scholar 

  12. Reik, W. & Surani, M. A. Nature 338, 112–113 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Haas, O. A., Argyriou-Tirita, A. & Lion, T. Nature 359, 414–416 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Johnson, D. R. Genetics 67, 795–804 (1974).

    Google Scholar 

  15. Driscoll, C., Dobkin, C. S. & Alter, B. P. Proc. natn. Acad. Sci. U.S.A. 86, 7470–7474 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Drouin, R., Lemieux, N. & Richer, C. L. Chromosome 99, 272–280 (1990).

    Article  Google Scholar 

  17. Forrester, W. C. et al. Genes Dev. 4, 1637–1650 (1990).

    Article  CAS  Google Scholar 

  18. Izumikawa, Y., Naritomi, K. & Hirayama, K. Hum. Genet. 87, 1–5 (1991).

    Article  CAS  Google Scholar 

  19. Sugawara, O., Takagi, N. & Sasaki, M. Cytogenet. Cell Genet. 39, 210–219 (1985).

    Article  CAS  Google Scholar 

  20. Driscoll, D. J. et al. Genomics 13, 917–924 (1992).

    Article  CAS  Google Scholar 

  21. Dittrich, B. et al. Hum. Genet. 90, 313–315 (1992).

    Article  CAS  Google Scholar 

  22. Forejt, J. & Gregorova, S. Cell 70, 443–450 (1992).

    Article  CAS  Google Scholar 

  23. Zemel, S., Bartolomei, M. S. & Tilghman, S. M. Nature Genet. 2, 61–65 (1992).

    Article  CAS  Google Scholar 

  24. Saunders, A. M. & Seldin, M. F. Genomics 6, 525–535 (1990).

    Article  Google Scholar 

  25. Shoelson, S. et al. Nature 302, 540–543 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Junien, C. & van Heyningen, V. Cytogenet. Cell Genet. 58, 459–554 (1991).

    Article  Google Scholar 

  27. Zhang, Y. & Tycko, B. Nature Genet. 1, 40–44 (1992).

    Article  CAS  Google Scholar 

  28. Rachmilewitz, J. et al. FEBS Lett. 309, 25–28 (1992).

    Article  CAS  Google Scholar 

  29. Rinchik, E. M. et al. Nature 361, 72–76 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Nicholls, R. D. et al. Proc. natn. Acad. Sci. U.S.A. 90, 2050–2054 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Rotwein, P. & Hall, L. DNA Cell Biol. 9, 725–735 (1990).

    Article  CAS  Google Scholar 

  32. Rinchik, E. Mammalian Genome 3, S104–120 (1992).

    Article  CAS  Google Scholar 

  33. Bell, G. et al. Proc. natn. Acad. Sci. U.S.A. 82, 6450–6454 (1982).

    Article  ADS  Google Scholar 

  34. Kuwano, A. et al. Hum molec. Genet. 1, 417–425 (1992).

    Article  CAS  Google Scholar 

  35. Chen, T. R., Kao, M. L., Marks, J. & Chen, Y. Y. Am. J. med. Genet. 9, 61–66 (1981).

    Article  CAS  Google Scholar 

  36. Lichter, P. et al. Science 247, 64–69 (1990).

    Article  ADS  CAS  Google Scholar 

  37. Conner, B. J. et al. Proc. natn. Acad. Sci. U.S.A. 80, 278–282 (1983).

    Article  ADS  CAS  Google Scholar 

  38. Ranier, S. et al. Nature 362, 747–749 (1993).

    Article  ADS  Google Scholar 

  39. Ogawa, O. et al. Nature 362, 749–751 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitsberg, D., Selig, S., Brandels, M. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993). https://doi.org/10.1038/364459a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364459a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing