Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rab proteins as membrane organizers

Key Points

  • Rab proteins, which constitute the largest family of monomeric GTPases, and their effectors coordinate consecutive stages of transport, such as vesicle formation, vesicle and organelle motility, and tethering of vesicles with target membranes.

  • The ability of Rabs to cycle regularly between GTP- and GDP-bound forms imposes temporal and spatial regulation to membrane transport.

  • Rabs mediate the first specific tethering event between a vesicle and its target membrane, and so provide a complementary layer of regulation to that subsequently provided by SNARE pairing.

  • Specific Rab effectors have been implicated in various membrane tethering events, including delivery of post-Golgi vesicles to the plasma membrane (for example, the exocyst complex), tethering of endosomes (EEA1) or vacuoles (the HOPS complex).

  • Rabs have been implicated in regulating vesicle motility through interaction with both microtubules and actin filaments of the cytoskeleton.

  • The structural heterogeneity shown by Rab effectors implies that these are highly specialized molecules whose activities are exclusively tailored for individual organelles and transport systems. Rab5 regulates the activity of several effectors and evidence indicates cooperativity between these molecules.

  • There is increasing evidence that Rab proteins and their effectors are not randomly distributed but are enriched in membrane domains, termed here Rab domains. In the case of Rab5, effector cooperativity, protein-lipid interactions and oligomerization between effectors are central factors to the formation of a Rab5 domain. The Rab5 machinery can be viewed as a modular system, in which specific biochemical interactions between Rab5 effectors and regulators as well as other endosomal proteins create spatial segregation. Furthermore, the integration between GTPase and ATPase cycles ensures a dynamic state between assembly and disassembly of complexes and so confers a specific control on domain size.

  • Direct interactions have been characterized between Rab effectors and SNAREs. The authors propose a model in which the selective incorporation of a cis-SNARE complex within a Rab domain is a prerequisite for trans-SNARES pairing, which brings two membranes into close proximity.

Abstract

Cellular organelles in the exocytic and endocytic pathways have a distinctive spatial distribution and communicate through an elaborate system of vesiculo-tubular transport. Rab proteins and their effectors coordinate consecutive stages of transport, such as vesicle formation, vesicle and organelle motility, and tethering of vesicles to their target compartment. These molecules are highly compartmentalized in organelle membranes, making them excellent candidates for determining transport specificity and organelle identity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of intracellular localization of Rab proteins.
Figure 2: Model of Rab domains on endosomes.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  3. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153– 159 (2000).Using the reconstituted liposome fusion assay, Rothman and colleagues systematically tested liposomes containing each of the yeast v-SNAREs for fusion with three potential t-SNARE complexes. The cognate SNARE pairs showed a high degree of selectivity, an important tenant of the SNARE hypothesis.

    Article  CAS  PubMed  Google Scholar 

  4. Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion . Nature 407, 194–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 ( 2000).Shows that the previously identified tethering factor, p115, is a Rab1 effector and direct ly interacts with the SNARE machinery. The functional importance of an interaction between a Rab effector and the cis -SNARE complex during vesicle budding highlights the multiple roles of Rab effectors.

    Article  CAS  PubMed  Google Scholar 

  8. Cao, X. & Barlowe, C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes . J. Cell Biol. 149, 55– 66 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sacher, M. et al. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17 , 2494–2503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, W., Sacher, M. & Ferro-Novick, S. TRAPP stimulates guanine nucleotide exchange on Ypt1p . J. Cell Biol. 151, 289– 296 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae . EMBO J. 15, 6483– 6494 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kee, Y. et al. Subunit structure of the mammalian exocyst complex. Proc. Natl Acad. Sci. USA 94, 14438– 14443 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559– 571 (1998).Exocytosis in yeast occurs in a polarized fashion. This study shows that Sec3p localizes to the site of polarized exocytosis and is required for the targeting of secretory vesicles to the bud. This is in line with the concept that Rab effectors specify where the vesicles should tether on their target compartment, allowing trans -SNARE complex formation to mediate fusion.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071– 1080 (1999).This work established that Sec15p, a subunit of the exocyst, is a Sec4p effector protein. It supports the idea that Rab proteins regulate the function of multimeric protein complexes important in the initial recognition of the docking site for an incoming vesicle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gorvel, J. -P., Chavrier, P., Zerial, M. & Gruenberg, J. Rab5 controls early endosome fusion in vitro. Cell 64, 915–925 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715– 728 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Chistoforidis, S., McBride, H. M., Burgoyne, R., D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 ( 1999).The identification of over 20 proteins that bind specifically to activated Rab5 opened up the idea that a much more complex protein machinery could be downstream of a Rab protein and have a wider regulatory role than previously imagined. Second, this paper shows that EEA1 alone can tether early endosomes and allow the SNARE machinery to mediate fusion.

    Article  CAS  Google Scholar 

  18. Simonsen, A. et al. EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Barbieri, M. A. et al. Evidence for a symmetrical requirement for Rab5-GTP in in vitro endosome–endosome fusion. J. Biol. Chem. 273, 25850–25855 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Rubino, M., Miaczynska, M., Lippe, R. & Zerial, M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  21. Haas, A., Scheglmann, D., Lazar, T., Gallwitz, D. & Wickner, W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J. 14, 5258–5270 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rieder, S. E. & Emr, S. D. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell 8, 2307–2327 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price, A., Seals, D., Wickner, W. & Ungermann, C. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J. Cell Biol. 148, 1231–1238 (2000). These experiments have shown that the HOPS complex is an effector of Ypt7p in vacuole tethering. Furthermore, this work, together with References 57 and 86 provided the first demonstrations of the dynamics of the interactions between Rab effector and SNARE machineries.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seals, D. F., Eitzen, G., Margolis, N., Wickner, W. T. & Price, A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl Acad. Sci. USA 97, 9402–9407 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Price, A., Wickner, W. & Ungermann, C. Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J. Cell Biol. 148, 1223–1230 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wurmser, A. E., Sato, T. K. & Emr, S. D. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion . J. Cell Biol. 151, 551– 562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  29. Nuoffer, C., Davidson, H. W., Matteson, J., Meinkoth, J. & Balch, W. E. A GDP-bound form of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J. Cell Biol. 125, 225– 237 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Riederer, M. A., Soldati, T., Shapiro, A. D., Lin, J. & Pfeffer, S. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans Golgi network . J. Cell Biol. 125, 573– 582 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. McLauchlan, H. et al. A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr. Biol. 8, 34– 45 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lanzetti, L. et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rehling, P., Darsow, T., Katzmann, D. J. & Emr, S. D. Formation of AP-3 transport intermediates requires Vps41 function. Nature Cell Biol. 1, 346–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580– 585 (1998).A yeast two-hybrid search for effectors identified a kinesin as a Rab6-interacting protein. In line with the concept that Rab proteins can have different functions, this result suggests that a Rab protein might be functionally connected with the microtubule-dependent motility of vesicles and organelles.

    Article  CAS  PubMed  Google Scholar 

  36. Hill, E., Clarke, M. & Barr, F. A. The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J. 19, 5711– 5719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A. & Zerial, M. Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biol. 1, 376–382 (1999).A role of Rab5 in the attachment and motility of early endosomes along microtubules was uncovered using in vitro assays. These data together with the findings of Reference 35 , strongly support an additional role of Rab proteins in organelle movement along the cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  38. Pruyne, D. W., Schott, D. H. & Bretscher, A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J. Cell Biol. 143, 1931–1945 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  39. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791– 808 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 ( 1991); erratum 352, 547 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  42. Wilson, S. M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl Acad. Sci. USA 97 , 7933–7938 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  44. Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266– 269 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Stenmark, H., Aasland, R., Toh, B. H. & D'Arrigo, A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271, 24048–24054 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Stenmark, H. & Aasland, R. FYVE-finger proteins — effectors of an inositol lipid. J. Cell Sci. 112, 4175–4183 (1999).

    CAS  PubMed  Google Scholar 

  47. Lawe, D. C., Patki, V., Heller-Harrison, R., Lambright, D. & Corvera, S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275, 3699–3705 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).The identification of two distinct lipid kinases as effectors of a Rab protein linked the Rab field to signal transduction and strengthened the idea that Rabs regulate the assembly of specialized lipid and protein microdomains.

    Article  CAS  PubMed  Google Scholar 

  49. Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Rameh, L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Siddhanta, U., McIlroy, J., Shah, A., Zhang, Y. & Backer, J. M. Distinct roles for the p110α and hVPS34 phosphatidylinositol 3′-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol. 143, 1647 –1659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).First demonstration of a functional connection between PI(3)K and membrane transport.

    Article  CAS  PubMed  Google Scholar 

  53. Volinia, S. et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J. 14, 3339–3348 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  55. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577– 4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 601–612 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilson, J. M. et al. EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts . Mol. Biol. Cell 11, 2657– 2671 (2000).References 57, 68 70 support the idea that Rab proteins and their effectors are compartmentalized in early endosomes and show a non-random distribution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  59. Mukherjiee, S. & Maxfield, F. R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 ( 2000).

    Article  Google Scholar 

  60. Simons, K. & Ikonen, E. Functional rafts in cell membranes . Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Domin, J., Gaidarov, I., Smith, M. E., Keen, J. H. & Waterfield, M. D. The class II phosphoinositide 3-kinase PI3K-C2α is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J. Biol. Chem. 275, 11943–11950 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Wurmser, A. E. & Emr, S. D. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17, 4930– 4942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gary, J. D., Wurmser, A. E., Bonangelino, C. J., Weisman, L. S. & Emr, S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis . J. Cell Biol. 143, 65– 79 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blondeau, F. et al. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 9, 2223– 2229 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. De Matteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10, 542–549 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Shorter, J. et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roberts, R. L. et al. Endosome fusion in living cells overexpressing GFP-rab5. J. Cell Sci. 112, 3667–3675 (1999).

    CAS  PubMed  Google Scholar 

  68. Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901– 914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123 –139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trischler, M., Stoorvogel, W. & Ullrich, O. Biochemical analysis of distinct Rab5- and Rab11-positive endosomes along the transferrin pathway. J. Cell Sci. 112, 4773–4783 (1999).

    CAS  PubMed  Google Scholar 

  71. Gruenberg, J. & Maxfield, F. R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552– 563 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. van der Sluijs, P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Burd, C. G., Babst, M. & Emr, S. D. Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking. Semin. Cell Dev. Biol. 9, 527–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura, N., Hirata, A., Ohsumi, Y. & Wada, Y. Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 11344–11349 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Shin, D. M., Zhao, X. S., Zeng, W., Mozhayeva, M. & Muallem, S. The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J. Cell Biol. 150, 1101–1112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hazuka, C. D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci. 19, 1324–1334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. 147, 743– 760 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex . Neuron 13, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, B., Steegmaier, M., Gonzalez, L. C Jr, & Scheller, R. H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247–252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Burd, C. G., Peterson, M., Cowles, C. R. & Emr, S. D. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast. Mol. Biol. Cell 8, 1089– 1104 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peterson, M. R., Burd, C. G. & Emr, S. D. Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  86. Tall, G. G., Hama, H., DeWald, D. B. & Horazdovsky, B. F. The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol. Biol. Cell 10, 1873–1889 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sato, T. K., Rehling, P., Peterson, M. R. & Emr, S. D. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol. Cell 6, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Orci, L., Perrelet, A. & Rothman, J. E. Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc. Natl Acad. Sci. USA 95, 2279–2283 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wiley, D. C. & Skehel, J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365–394 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Uyeda, T. Q., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Howard, J. & Spudich, J. A. Is the lever arm of myosin a molecular elastic element? Proc. Natl Acad. Sci. USA 93, 4462–4464 (1996).

    CAS  PubMed  Google Scholar 

  92. Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95– 100 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Colombo, M. I., Beron, W. & Stahl, P. D. Calmodulin regulates endosome fusion. J. Biol. Chem. 272, 7707–7712 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Koda, T., Zheng, J. Y. & Ishibe, M. Rab33B regulates intra-Golgi transport and utilizes a novel kinesin as an effector. 39th Annual Meeting of the American Society for Cell Biology Abstract no. 1244, 214a (Washington, D. C., 1999).

    Google Scholar 

  95. Imamura, H. et al. Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell 9, 2561–2575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chavrier, P. & Goud, B. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11, 466–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Dirac-Svejstrup, A. B., Sumizawa, T. & Pfeffer, S. R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J. 16, 465–472 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ayad, N., Hull, M. & Mellman, I. Mitotic phosphorylation of rab4 prevents binding to a specific receptor on endosome membranes. EMBO J. 16 , 4497–4507 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bucci, C., Chiariello, M., Lattero, D., Maiorano, M. & Bruni, C. B. Interaction cloning and characterization of the cDNA encoding the human prenylated rab acceptor (PRA1). Biochem. Biophys. Res. Commun. 258, 657– 662 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Matern, H. et al. A novel Golgi membrane protein is part of a GTPase-binding protein complex involved in vesicle targeting. EMBO J. 19, 4485–4492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hoffenberg, S. et al. A novel membrane-anchored Rab5 interacting protein required for homotypic endosome fusion. J. Biol. Chem. 275, 24661–24669 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Mu, F. T. et al. EEA1, an early endosome-associated protein. EEA1 is a conserved α-helical peripheral membrane protein flanked by cysteine 'fingers' and contains a calmodulin-binding IQ motif. J. Biol. Chem. 270, 13503– 13511 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Carr, C. M., Grote, E., Munson, M., Hughson, F. M. & Novick, P. J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333 –344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Simonsen, A., Gaullier, J. M., D'Arrigo, A. & Stenmark, H. The Rab5 effector EEA1 interacts directly with syntaxin–6. J. Biol. Chem. 274, 28857–28860 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Zerial lab, R. Lippe, M. Miaczynska and S. De Renzis, as well as our colleagues K. Simons, J. Gruenberg, G. Griffiths, J. Howard for their helpful comments and critical reading of the manuscript. We are grateful to I. Kaestner for superb secretarial help.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

p115

Rabaptin-5

EEA1

Rabenosyn-5

Ypt1p

Rab1

TRAPP COMPLEX

Sec4p

Exocyst

Rab5

Ypt7p

HOPS COMPLEX

Vps41p

Vps39p

Rabex-5

Rab9

Rab6

Rabkinesin-6

Griscelli syndrome

MYO5A

RAB27A

myosin-VA

Rab27a

FYVE finger

p85α

p110β

hVPS34

p150

Rab4

Rab11

Sec1p

Vps33p

Vps45p

Vac1p

Pep12p

syntaxin 13

Vam3p

calmodulin

calmodulin-binding IQ motif

Rab33b

syntaxin 6

HYPERLINKED FIGURE AND TABLES

α-actinin

δ-PDE

Dss4p

EPS8

Gyp1p

Gyp2p

Gyp3p

Gyp6p

Gyp7p

mSec13

MSS4

p40

PRA1

Rab2

Rab3

Rab7

Rab8

Rab10

Rab12

Rab13

Rab17

Rab18

Rab20

Rab21

Rab22

Rab24

Rab25

Rab26

Rab30

Rab36

Rab37

Rab11bp

RAB3GAP

RAB8IP

rabphilin3

Sec2p

Sec4p

Sec15p

Tuberous sclerosis 2

VAMP2

Vps9p

VPS45

Vps39p

Vps41p

Yif1p

Yip1p

Ypt6p

Ypt51p

FURTHER INFORMATION

Zerial lab home page

University of Ottawa Heart Institute

Glossary

COGNATE SNARES

SNAREs on opposite membranes that are destined to form trans-SNARE complexes to mediate fusion.

NSF

Molecular chaperone involved in recycling SNAREs after one round of fusion.

EFFECTOR

A protein or protein complex that binds the GTPase directly and in a GTP-dependent manner and is required for the downstream function determined by that GTPase.

EEA1

The antigen involved in a human autoimmune disease.

COPII VESICLES

Coated vesicles involved in transport from the endoplasmic reticulum to the Golgi.

CCP

Area of the plasma membrane where receptors and the clathrin machinery are concentrated, preparing to form a vesicle.

CCV

Coated vesicles involved in the endocytosis of receptors at the plasma membrane.

LIPID RAFTS

Lipids including cholesterol and sphingomyelin aggregated laterally to form membrane microdomains.

GREEN FLUORESCENT PROTEIN

Autofluorescent protein originally identified in the jellyfish Aequorea Victoria.

RECYCLING ENDOSOME

About 90% of endocytosed receptors are recycled to the plasma membrane. At least part of this traffic occurs through recycling endosomes.

TRANSFERRIN

Protein involved in ferric ion uptake into the cell. The pathway followed by transferrin bound to its receptor defines the recycling pathway.

APICAL JUNCTIONAL COMPLEX

Desmosomes, adherens junctions and tight junctions make up the apical junctional complex.

NEURITE

Process extended by a nerve cell that can give rise to an axon or a dendrite.

CIS-SNARE COMPLEX

SNARE pairing occurring within the same membrane.

SEC18P (Sec18p)

Saccharomyces cerevisiae homologue of NSF.

HAEMAGGLUTININ

Spike protein of the influenza virus. HA is the best-understood fusion protein.

TRANSCYTOSIS PATHWAYS

Transport of macromolecules across a cell, consisting of endocytosis of a macromolecule at one side of a monolayer and exocytosis at the other side.

APICAL

Plasma membrane surface of an epithelial cell that faces the lumen.

BASOLATERAL

Plasma membrane surface of an epithelial cell that adjoins underlying tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerial, M., McBride, H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107–117 (2001). https://doi.org/10.1038/35052055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing