Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for Saccharomyces cerevisiae histone H2A in DNA repair

Abstract

Histone proteins associate with and compact eukaryotic nuclear DNA to form chromatin. The basic unit of chromatin is the nucleosome, which is made up of 146 base pairs of DNA wrapped around two of each of four core histones1, H2A, H2B, H3 and H4. Chromatin structure and its regulation are important in transcription and DNA replication2,3,4. We therefore thought that DNA-damage signalling and repair components might also modulate chromatin structure. Here we have characterized a conserved motif in the carboxy terminus of the core histone H2A from Saccharomyces cerevisiae that contains a consensus phosphorylation site for phosphatidylinositol-3-OH kinase related kinases (PIKKs). This motif is important for survival in the presence of agents that generate DNA double-strand breaks, and the phosphorylation of this motif in response to DNA damage is dependent on the PIKK family member Mec1. The motif is not necessary for Mec1-dependent cell-cycle or transcriptional responses to DNA damage, but is required for efficient DNA double-strand break repair by non-homologous end joining. In addition, the motif has a role in determining higher order chromatin structure. Thus, phosphorylation of a core histone in response to DNA damage may cause an alteration of chromatin structure that facilitates DNA repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The four C-terminal amino-acid residues (SQEL) of histone H2A are important for survival after DNA damage.
Figure 2: Serine 129 of histone H2A is phosphorylated in a Mec1-dependent manner and is important for NHEJ.
Figure 3: Substitution of H2A Ser 129 with glutamic acid changes global chromatin structure.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711– 720 (1999).

    Article  CAS  Google Scholar 

  3. Kornberg, R. D. & Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev. 9, 148–151 (1999).

    Article  CAS  Google Scholar 

  4. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916– 934 (1999).

    Article  CAS  Google Scholar 

  6. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    Article  CAS  Google Scholar 

  7. O'Neill, T. et al. Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J. Biol. Chem. 275, 22719–22727 (2000).

    Article  CAS  Google Scholar 

  8. Kim, S.-T., Lim, D.-S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538 –37543 (1999).

    Article  CAS  Google Scholar 

  9. Anderson, C. W. & Lees-Miller, S. P. The nuclear serine/threonine protein kinase DNA-PK. Crit. Rev. Eukaryotic Gene Exp. 2, 283–314 ( 1992).

    CAS  Google Scholar 

  10. Bannister, A. J., Gottleib, T. M., Kouzarides, T. & Jackson, S. P. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro: definition of the minimal kinase recognition motif. Nucleic Acids Res. 21, 1289–1295 (1993).

    Article  CAS  Google Scholar 

  11. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–915 (1999).

    Article  CAS  Google Scholar 

  12. Hirschhorn, J. N., Bortvin, A. L., Ricupero-Hovasse, S. L. & Winston, F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol. Cell. Biol. 15, 1999–2009 ( 1995).

    Article  CAS  Google Scholar 

  13. Schwartz, J. L. Monofunctional alkylating agent-induced S-phase-dependent DNA damage. Mutat. Res. 216, 111–118 (1989).

    Article  CAS  Google Scholar 

  14. Povirk, L. F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutat. Res. 355 , 71–89 (1996).

    Article  Google Scholar 

  15. Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271, 357–360 ( 1996).

    Article  ADS  CAS  Google Scholar 

  16. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  Google Scholar 

  17. de la Torre-Ruiz, M. A., Green, C. M. & Lowndes, N. F. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17, 2687–2698 (1998).

    Article  CAS  Google Scholar 

  18. Elledge, S. J., Zhou, Z., Allen, J. B. & Navas, T. A. DNA damage and cell cycle regulation of ribonucleotide reductase. BioEssays 15, 333–339 (1993).

    Article  CAS  Google Scholar 

  19. Longhese, M. P., Foiani, M., Muzi-Falconi, M., Lucchini, G. & Plevani, P. DNA damage checkpoint in budding yeast. EMBO J. 17, 5525– 5528 (1998).

    Article  CAS  Google Scholar 

  20. Critchlow, S. E. & Jackson, S. P. DNA joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998).

    Article  CAS  Google Scholar 

  21. Lewis, L. K., Westmoreland, J. W. & Resnick, M. A. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152, 1513–1529 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24, 4639–4648 ( 1996).

    Article  CAS  Google Scholar 

  23. Astrom, S. U., Okamura, S. M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature 397, 310 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Lee, S. E., Paques, F., Sylvan, J. & Haber, J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  Google Scholar 

  25. Worcel, A., Strogatz, S. & Riley, D. Structure of chromatin and the linking number of DNA. Proc. Natl Acad. Sci. USA 78, 1461– 1465 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Wechser, M. A., Kladde, M. P., Alfieri, J. A. & Peterson, C. L. Effects of Sin—versions of histone H4 on yeast chromatin structure and function. EMBO J. 16, 2086– 2095 (1997).

    Article  CAS  Google Scholar 

  27. Usachenko, S. I., Bavykin, S. G., Gavin, I. M. & Bradbury, E. M. Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc. Natl Acad. Sci. USA 91, 6845– 6849 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Rouse, F. Winston, N. Lowndes and S. Elledge for providing strains and reagents; and G. Rathbun, N. Lowndes, F. Winston and members of the S.P.J. laboratory, in particular, S. Bell, J. Bradbury and J. Rouse, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Jackson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downs, J., Lowndes, N. & Jackson, S. A role for Saccharomyces cerevisiae histone H2A in DNA repair . Nature 408, 1001–1004 (2000). https://doi.org/10.1038/35050000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing