Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural model of ATP-binding proteing associated with cystic fibrosis, multidrug resistance and bacterial transport

Abstract

THE ATP-binding cassette (ABC) superfamily of transport systems now includes over thirty proteins that share extensive sequence similarity and domain organization (reviewed in refs 1–3). This superfamily includes the well characterized periplasmic binding protein-dependent uptake systems of prokaryotes, bacterial exporters, and eukaryotic proteins including the P-glycoprotein associated with multidrug resistance in tumours (MDR), the STE6 gene product that mediates export of yeast a-factor mating pheromone, pfMDR that is implicated in chloroquine resistance of the malarial parasite, and the product of the cystic fibrosis gene (CFTR). Here we present a tertiary structure model of the ATP-binding cassettes characteristic of this class of transport system, based on similarities between the predicted secondary structures of members of this family and the previously determined structure of adenylate kinase. This model has implications for both the molecular basis of transport and cystic fibrosis and provides a framework for further experimentation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ames, G. F-L. A. Rev. Biochem. 55, 397–425 (1986).

    Article  CAS  Google Scholar 

  2. Higgins, C. F., Gallagher, M. P., Hyde, S. C., Mimmack, M. L. & Pearce, S. R. Phil. Trans. R. Soc. Lond. 326, 353–365 (1990).

    Article  CAS  Google Scholar 

  3. Higgins, C. F. et al J. biomemb. Bioenerg. 22, 571–591 (1990).

    Article  CAS  Google Scholar 

  4. Walter, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  Google Scholar 

  5. Higgins, C. F., Hiles, I. D., Whalley, K. & Jamieson, D. J. EMBO J. 4, 1033–1040 (1985).

    Article  CAS  Google Scholar 

  6. Higgins, C. F. Res. Microbiol. 6, 73–80 (1990).

    Google Scholar 

  7. Bishop, L., Agbayani, R., Ambudkar, S. V., Maloney, P. C. & Ames, G. F-L. Proc. natn. Acad. Sci. U.S.A. 86, 6953–6957 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Mimmack, M. L. et al. Proc. natn. Acad. Sci. U.S.A. 86, 8257–8261 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Horio, M., Gottesman, M. M. & Pastan, I. Proc. natn. Acad. Sci. U.S.A. 85, 3580–3584 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hamada, H. & Tsuruo, T. J. biol. Chem. 263, 1454–1458 (1988).

    CAS  PubMed  Google Scholar 

  11. Ames, G. F-L. & Nikaido, K. Eur. J. Biochem. 115, 525–531 (1981).

    Article  CAS  Google Scholar 

  12. Chou, P. Y. & Fasman, G. J. molec. Biol. 74, 263–281 (1973).

    Article  CAS  Google Scholar 

  13. Dreusicke, D., Karplus, P. A. & Schulz, G. E. J. molec. Biol. 199, 359–369 (1988).

    Article  CAS  Google Scholar 

  14. Evans, P. R., Farrants, G. W. & Hudson, P. J. Phil. Trans. R. Soc. Lond. 293, 53 (1981).

    Article  CAS  Google Scholar 

  15. Bennett, W. S. & Steitz, T. A. J. molec. Biol. 140, 183 (1980).

    Article  CAS  Google Scholar 

  16. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D. K. J. molec. Biol. 134, 109 (1979).

    Article  CAS  Google Scholar 

  17. Starzyk, R. M., Webster, T. A. & Schimmel, P. Science 237, 1614–1618 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Brooks, B. R. et al. J. comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  19. Fry, D. C., Kuby, S. A. & Mildvan, A. S. Biochemistry 24, 4680–4694 (1985).

    Article  CAS  Google Scholar 

  20. Rossman, M. G. et al., in The Enzymes (ed. Boyer P. D.) 11A, 61 (Academic, New York 1975).

    Google Scholar 

  21. Schulz, G. E. Cold Spring Harb. Symp. quant. Biol. 52, 429–439 (1987).

    Article  CAS  Google Scholar 

  22. Jurnak, F., Heffron, S. & Bergmann, E. Cell 60, 525–528 (1990).

    Article  CAS  Google Scholar 

  23. Riordan, J. R. et al. Science 245, 1066–1073 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Cutting, G. et al., Nature 346, 366–369 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Gill, D. R., Hatfull, G. F. & Salmond, G. P. C. Molec. Gen. Genet. 205, 134–145 (1986).

    Article  CAS  Google Scholar 

  26. White, M. B. et al. Nature 344, 665–667 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Goodfellow, P. Cystic Fibrosis (Oxford University Press, 1989).

    Google Scholar 

  28. Landry, D. W. et al. Science 244, 1469–1472 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Hiles, I. D., Gallagher, M. P., Jamieson, D. J. & Higgins, C. F. J. molec. Biol. 195, 125–142 (1987).

    Article  CAS  Google Scholar 

  30. Shuman, H. A. J. biol. Chem. 257, 5455–5461 (1982).

    CAS  PubMed  Google Scholar 

  31. Bell, A. W. et al. J. biol. Chem. 261, 7652–7658 (1986).

    CAS  PubMed  Google Scholar 

  32. Dudler, R., Schmidhauser, C., Parish, R. W., Wettenhall, R. E. H. & Schmidt, T. EMBO J. 7, 3963–3970 (1988).

    Article  CAS  Google Scholar 

  33. Dreesen, T. D., Johnson, D. H. & Henikoff, S. Molec. cell. Biol. 8, 5206–5215 (1988).

    Article  CAS  Google Scholar 

  34. Felmlee, T., Pellett, S. & Welch, R. A. J. Bactl. 163, 94–105 (1985).

    CAS  Google Scholar 

  35. Endicott, J. A. & Ling, V. A. Rev. Biochem. 58, 137–171 (1989).

    Article  CAS  Google Scholar 

  36. McGrath, J. P. & Varshavsky, A. Nature 340, 400–403 (1989).

    Article  ADS  CAS  Google Scholar 

  37. Kuchler, K., Sterne, R. E. & Thorner, J. EMBO J. 8, 3973–3984 (1989).

    Article  CAS  Google Scholar 

  38. Higgins, C. F. et al. Nature 298, 723–726 (1982).

    Article  ADS  CAS  Google Scholar 

  39. Gilson, E., Nikaido, H. & Hofnung, M. Nucleic Acids Res. 10, 7449–7458 (1982).

    Article  CAS  Google Scholar 

  40. Stirling, D. A. et al. Molec. Microbiol. 3, 1025–1038 (1989).

    Article  CAS  Google Scholar 

  41. Higgins, C. F. et al. Nature 323, 448–450 (1986).

    Article  ADS  CAS  Google Scholar 

  42. Surin, B. P., Rosenberg, H. & Cox, G. B. J. Bact. 161, 189–198 (1985).

    CAS  PubMed  Google Scholar 

  43. Gros, P., Croop, J. & Housman, D. Cell 47, 371–380 (1986).

    Article  CAS  Google Scholar 

  44. Jones, T. A. & Thirup, S. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyde, S., Emsley, P., Hartshorn, M. et al. Structural model of ATP-binding proteing associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362–365 (1990). https://doi.org/10.1038/346362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346362a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing