Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of IRF-1 with bound DNA reveals determinants of interferon regulation

Abstract

The family of interferon regulatory factor (IRF) transcription factors is important in the regulation of interferons in response to infection by virus and in the regulation of interferon-inducible genes1,2. The IRF family is characterized by a unique ‘tryptophan cluster’ DNA-binding region. Here we report the crystal structure of the IRF-1 region bound to the natural positive regulatory domain I (PRD I) DNA element from the interferon-β promoter1. The structure provides the first three-dimensional view of a member of the growing IRF family, revealing a new helix–turn–helix motif that latches onto DNA through three of the five conserved tryptophans. The motif selects a short GAAA core sequence through an obliquely angled recognition helix, with an accompanying bending of the DNA axis in the direction of the protein. Together, these features suggest a basis for the occurrence of GAAA repeats within IRF response elements and provide clues to the assembly of the higher-order interferon-β enhancesome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, At the top is shown the sequence of the IFN-β promoter containing the regulatory elements PRD I-IV (ref. 1).
Figure 2: An overview of the IRF-1–DNA complex.
Figure 3: Protein–DNA interactions.
Figure 4: A model showing the van der Waals surfaces of the DNA-binding regions of IRF-1 and the NF-κB p50 homodimer bound to the PRD I and.

Similar content being viewed by others

References

  1. Maniatis, T. et al. in Transcriptional Regulation (eds McKnight, S. & Yamamoto, K.) 1993–1220 (Cold Spring Harbor Laboratory Press, New York, (1992)).

    Google Scholar 

  2. Taniguchi, T., Harada, H. & Lamphier, M. Regulation of the interferon system and cell growth by the IRF transcription factors. J. Cancer Res. Clin. Oncol. 121, 516–520 (1995).

    Article  CAS  Google Scholar 

  3. Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).

    Article  CAS  Google Scholar 

  4. Miyamoto, M. et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to the IFN-β gene regulatory elements. Cell 54, 903–913 (1988).

    Article  CAS  Google Scholar 

  5. Harada, H. et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58, 729–739 (1989).

    Article  CAS  Google Scholar 

  6. Driggers, P. H. et al. An interferon-γ regulated protein that binds the interferon-inducible element of the major histocompatibility class I genes. Proc. Natl Acad. Sci. USA 87, 3743–3747 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Veals, S. A. et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA binding proteins. Mol. Cell. Biol. 12, 3315–3324 (1992).

    Article  CAS  Google Scholar 

  8. Au, W. C., Moore, P. A., Lowther, W., Juang, Y. T. & Pitha, P. M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl Acad. Sci. USA 92, 11657–11661 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995).

    Article  CAS  Google Scholar 

  10. Schultz, S. C., Shields, G. C. & Steitz, T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253, 1001–1007 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L. & Sweet, R. M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Harrison, S. C. & Aggarwal, A. K. DNA recognition by proteins with the helix-turn-helix motif. A. Rev. Biochem. 59, 933–969 (1990).

    Article  CAS  Google Scholar 

  14. Ferre-D'Amare, A. R., Prendergast, G. C., Ziff, E. B. & Burley, S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Kawakami, T. et al. Possible involvement of the transcription factor ISGF3 gamma in virus-induced expression of the IFN-beta gene. FEBS Lett. 358, 225–229.

  16. Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. & Harrison, S. C. Recognition of a DNA operator by repressor of phage 434: a view at high resolution. Science 242, 899–907 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Darnell, J. E. J, Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signalling proteins. Science 264, 1415–1421 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Spolar, R. S. & Record, M. T. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  21. Falvo, J. V., Thanos, D. & Maniatis, T. Reversal of intrinsic DNA bends in the IFNβ gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83, 1101–1111 (1995).

    Article  CAS  Google Scholar 

  22. Ghosh, G., Van Duyne, G., Ghosh, S. & Sigler, P. B. The structure of NF-κB p50 homodimer bound to a κB site. Nature 373, 303–310 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Muller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373, 311–317 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Horvarth, C. M., Stark, G. R., Kerr, I. M. & Darnell, J. E. J Interactions between STAT and non-STAT proteins in the interferon stimulated gene factor 3 transcription complex. Mol. Cell. Biol. 16, 6957–6964 (1996).

    Article  Google Scholar 

  25. Escalante, C. R., Yie, J., Thanos, D. & Aggarwal, A. K. Expressions, purification, and co-crystallization of IRF-1 bound to the interferon-β element PRD I. FEBS Lett. 414, 219–220 (1997).

    Article  CAS  Google Scholar 

  26. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Furey, W. Phases: A Program Package for the Processing and Analysis of Diffraction Data for Macromolecules (VA Medical Center, Pittsburgh, PA, (1993)).

    Google Scholar 

  28. Brunger, A. T. X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, (1992)).

    Google Scholar 

  29. Jones, A. T., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  30. Uegaki, K., Shirakawa, M., Harada, H., Taniguchi, T. & Kyogoku, Y. Secondary structure and folding topology of the DNA binding domain of interferon regulatory factor 2, as revealed by NMR spectroscopy. FEBS Lett. 359, 184–188 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at CHESS for facilitating data collection, E. Jacobson, H. Viadiu and D. Wah for help with data collection, G. Mogilnitskiy for technical assistance, L. Shapiro and H. Weinstein for comments on the manuscript. Coordinates have been deposited in the Brookhaven Protein Database. Accession number 1IF1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneel K. Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escalante, C., Yie, J., Thanos, D. et al. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391, 103–106 (1998). https://doi.org/10.1038/34224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing