Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis

Abstract

The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe osteopetrosis and a defect in tooth eruption, and completely lack osteoclasts as a result of an inability of osteoblasts to support osteoclastogenesis. Although dendritic cells appear normal, opgl-deficient mice exhibit defects in early differentiation of T and B lymphocytes. Surprisingly, opgl-deficient mice lack all lymph nodes but have normal splenic structure and Peyer's patches. Thus OPGL is a new regulator of lymph-node organogenesis and lymphocyte development and is an essential osteoclast differentiation factor in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the opgl gene.
Figure 2: Osteopetrosis and absence of osteoclasts in opgl−/− mice.
Figure 3: opgl−/− mice show normal osteoclast precursors but an inability of osteoblasts to support osteoclastogenes.
Figure 4: Impaired lymphocyte development in opgl−/− mice.
Figure 5: OPGL regulates lymph-node organogenesis.

Similar content being viewed by others

References

  1. Felix, R., Hofstetter, W. & Cecchini, M. G. Recent developments in the understanding of the pathophysiology of osteopetrosis. Eur. J. Endocrinol. 134, 143–156 (1996).

    Article  CAS  Google Scholar 

  2. Roodman, G. D. Advances in bone biology: the osteoclast. Endocr. Hev. 17, 308–332 (1996).

    CAS  Google Scholar 

  3. Manolagas, S. C. & Jilka, R. L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. New Engl. J. Med. 332, 305–311 (1995).

    Article  CAS  Google Scholar 

  4. Popoff, S. N. & Schneider, G. B. Animal models of osteopetrosis: the impact of recent molecular developments on novel strategies for therapeutic intervention. Mol. Med. Today 2, 349–358 (1996).

    Article  CAS  Google Scholar 

  5. Teitelbaum, S. I. The osteoclast and osteoporosis. Mt Sinai J. Med. 63, 399–402 (1996).

    CAS  PubMed  Google Scholar 

  6. Reddi, A. H. Bone morphogenesis and modeling: soluble signals sculpt osteosomes in the solid state. Cell 89, 159–161 (1997).

    Article  CAS  Google Scholar 

  7. Mostov, K. & Werb, Z. Journey across the osteoclast. Science 276, 219–220 (1997).

    Article  CAS  Google Scholar 

  8. Rosen, CJ. & Kessenich, C. R. The pathophysiology and treatment of postmenopausal osteoporosis. An evidence-based approach to estrogen replacement therapy. Endocr. Metab. Clin. North Am. 26, 295–311 (1997).

    Article  CAS  Google Scholar 

  9. Kanis, J. A. Bone and cancer: pathophysiology and treatment of metastases. Bone 17 (suppl.), 101–105 (1995).

    Article  Google Scholar 

  10. Seitz, M. & Hunstein, W. Enhanced prostanoid release from monocytes of patients with rheumatoid arthritis and active systemic lupus erythematosus. Annu. Rheum. Dis. 44, 438–445 (1985).

    Article  CAS  Google Scholar 

  11. Yoshida, H. et al. The murine mutation osteopetrosis in in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl Acad. Sci. USA 87, 4828–4832 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Lagasse, E. & Weissman, I. L. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021–1031 (1997).

    Article  CAS  Google Scholar 

  14. Begg, S. K. et al. Delayed hematopoietic development in osteopetrotic (op/op) mice. J. Exp. Med. 177, 237–242 (1993).

    Article  CAS  Google Scholar 

  15. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  Google Scholar 

  16. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Anderson, D. M. et al. Ahomologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    Article  CAS  Google Scholar 

  19. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  Google Scholar 

  20. Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  22. Iotsova, V. et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nature Med. 3, 1285–1289 (1997).

    Article  CAS  Google Scholar 

  23. Franzoso, G. et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  Google Scholar 

  24. Kurihara, N. et al. Generation of osteoclasts from isolated heatopoietic progenitor cells. Blood 74, 1295–1302 (1989).

    CAS  PubMed  Google Scholar 

  25. Kurihara, N., Chenu, C., Miller, M., Civin, C. & Roodman, G. D. Identification of committed mononuclear precursors for osteoclast-like cells formed in long term human marrow cultures. Endocrinology 126, 2733–2741 (1990).

    Article  CAS  Google Scholar 

  26. Anderson, G., Moore, N. C., Owen, J. J. & Jenkinson, E. J. Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73–99 (1996).

    Article  CAS  Google Scholar 

  27. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  28. Akagawa, K. S. et al. Generation of CD1+RelB+ dendritic cells and tartrate-resistant acid phosphatase-positive osteoclast-like multinucleated giant cells from human monocytes. Blood 88, 4029–4039 (1996).

    CAS  PubMed  Google Scholar 

  29. Steinman, R. M., Kaplan, G., Witmer, M. D. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med. 149, 1–16 (1979).

    Article  CAS  Google Scholar 

  30. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  31. Saoulli, K. et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J. Exp. med. 187, 1849–1862 (1998).

    Article  CAS  Google Scholar 

  32. DeBenedette, M. A., Shahinian, A., Mak, T. W. & Watts, T. H. Costimulation of CD28 T lymphocytes by 4-1BB ligand. J. Immunol. 158, 551–559 (1997).

    CAS  PubMed  Google Scholar 

  33. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6, 491–500 (1997).

    Article  CAS  Google Scholar 

  35. Alimzhanov, M. B. et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc. Natl Acad. Sci. USA 94, 9302–9307 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  38. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M. H. & Pfeffer, K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  39. Rennert, P. D., James, D., Mackey, F., Browning, J. L. & Hochman, P. S. Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity 9, 71–79 (1998).

    Article  CAS  Google Scholar 

  40. Bailey, R. P. & Weiss, L. Ontogeny of human fetal lymph nodes. Am. J. Anat. 142, 15–27 (1975).

    Article  CAS  Google Scholar 

  41. Cheng, A. M. et al. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl Acad. Sci. USA 94, 9797–9801 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor alpha gene in development of alpha beta but not gamma delta T cells. Nature 375, 795–798 (1995).

    Article  ADS  CAS  Google Scholar 

  44. Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    Article  ADS  CAS  Google Scholar 

  45. Turner, M. et al. Arequirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  Google Scholar 

  46. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  47. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  Google Scholar 

  48. Mombaerts, P. et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75, 274–282 (1993).

    Article  CAS  Google Scholar 

  49. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  Google Scholar 

  50. Takahashi, N. et al. Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. Endocrinology 128, 1792–1796 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bouchard for cell sorting; D. Duryea and C. Burgh for technical assistance; R. Boyd, M. Bachmann, G. Wick, and N.Romani for reagents; M. Saunders for editing this manuscript; and R. Yoshida, K. Bachmaier, A.Hakem, I.Kozieradzki, T. Sasaki and M. Nghiem for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Penninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, YY., Yoshida, H., Sarosi, I. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999). https://doi.org/10.1038/16852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16852

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing