Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy

Abstract

Miyoshi myopathy (MM) is an adult onset, recessive inherited distal muscular dystrophy that we have mapped to human chromosome 2p13. We recently constructed a 3-Mb P1-derived artificial chromosome (PAC) contig spanning the MM candidate region. This clarified the order of genetic markers across the MM locus, provided five new polymorphic markers within it and narrowed the locus to approximately 2 Mb. Five skeletal muscle expressed sequence tags (ESTs) map in this region. We report that one of these is located in a novel, full-length 6.9-kb muscle cDNA, and we designate the corresponding protein 'dysferlin'. We describe nine mutations in the dysferlin gene in nine families; five are predicted to prevent dysferlin expression. Identical mutations in the dysferlin gene can produce more than one myopathy phenotype (MM, limb girdle dystrophy, distal myopathy with anterior tibial onset).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the MM locus and dysferlin cDNA.
Figure 2: Northern blot of five novel ESTs expressed in skeletal muscle.
Figure 3: Dysferlin amino acid sequence and hydrophobicity.
Figure 4: Representative pedigree with dysferlin mutations.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hoffman, E. Clinical and histopathological features of abnormalities of the dystrophin-based membrane cytoskeleton. Brain Pathol. 6, 49–61 (1996).

    Article  CAS  Google Scholar 

  2. Brown, R.J. Dystrophin-associated proteins and the muscular dystrophies. Annu. Rev. Med. 48, 457–466 ( 1997).

    Article  CAS  Google Scholar 

  3. Bonnemann, C., McNally, E. & Kunkel, L. Beyond dystrophin: current progress in the muscular dystrophies. Curr. Opin. Pediatr. 8, 569 –582 (1996).

    Article  CAS  Google Scholar 

  4. Miyoshi, M., Kawai, H., Iwasa, M., Kuska, K. & Nishino, H. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Brain 109, 31–54 (1986).

    Article  Google Scholar 

  5. Bejaoui, K. et al. Linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-13. Neurology 45 , 768–772 (1995).

    Article  CAS  Google Scholar 

  6. Bejaoui, K. et al. Genetic fine mapping of the Miyoshi myopathy locus and exclusion of eight candidate genes. Neurogenetics 1, 189-196 (1998).

    Article  CAS  Google Scholar 

  7. Bashir, R. et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum. Mol. Genet. 3, 455–457 (1994).

    Article  CAS  Google Scholar 

  8. Bashir, R. et al. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p. Genomics 33, 46–52 (1996).

    Article  CAS  Google Scholar 

  9. Passos-Bueno, M. et al. Confirmation of the 2p locus for the mild autosomal recessive limb-girdle muscular dystrohy gene (LGMD2B) in three families allows refinement of the candidate region. Genomics 27, 192 –195 (1995).

    Article  CAS  Google Scholar 

  10. Weiler, T. et al. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype. Am. J. Hum. Genet. 59, 872– 878 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Illarioshkin, S. et al. Refined genetic location of the chromosome 2p-linked progressive muscular dystrophy gene. Genomics 42, 345–348 (1997).

    Article  CAS  Google Scholar 

  12. Liu, J. et al. Generation of a 3-Mb PAC contig spanning the Miyoshi myopathy/limb girdle muscular dystrophy (MM/LGMD2B) locus on chromosome 2p13. Genomics 49, 23–29 (1998).

    Article  CAS  Google Scholar 

  13. Hudson, T. et al. An STS-based map of the human genome. Science 270, 1945–1954 ( 1995).

    Article  CAS  Google Scholar 

  14. Hudson, T. et al. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics 13, 622–629 (1992).

    Article  CAS  Google Scholar 

  15. Gastier, J. et al. Survey of trinucleotide repeats in the human genome: assessment of their utility as genetic markers. Hum. Mol. Genet. 4, 1829–1836 (1995).

    Article  CAS  Google Scholar 

  16. Schuler, G. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  Google Scholar 

  17. Kozak, M. An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125– 8133 (1987).

    Article  CAS  Google Scholar 

  18. Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).

    Article  CAS  Google Scholar 

  19. Argon, Y. & Ward, S. Caenorhabditis elegans fertilization-defective mutants with abnormal sperm. Genetics 96, 413–433 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Achanzar, W. & Ward, S. A nematode gene required for sperm vesicle fusion. J. Cell Sci. 110, 1073– 1081 (1997).

    CAS  PubMed  Google Scholar 

  21. Ward, S., Argon, Y. & Nelson, G. Sperm morphogenesis in wild-type and fertilization-defective mutants of Caenorhabditis elegans. J. Cell Biol. 91, 26–44 (1981).

    Article  CAS  Google Scholar 

  22. Rizo, J. & Südhof, T. C2-domains, structure and function of a universal Ca+-binding domain. J. Biol. Chem. 273 , 15882–15897 (1998).

    Article  Google Scholar 

  23. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661– 665 (1988).

    Article  CAS  Google Scholar 

  24. Orita, S. et al. Doc2: a novel brain protein having two repeated C2-like domains. Biochem. Biophys. Res. Comm. 206, 439– 448 (1995).

    Article  CAS  Google Scholar 

  25. Sakaguchi, G., Orita, S., Maeda, M., Igarashi, H. & Takai, Y. Molecular cloning of an isoform of Doc2 having two C2-like domains. Biochem. Biophys. Res. Comm. 217, 1053–1061 (1995).

    Article  CAS  Google Scholar 

  26. Sudhof, T. & Rizo, J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17, 379–388 (1996).

    Article  CAS  Google Scholar 

  27. Henry, M. & Campbell, K. Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Curr. Opin. Cell Biol. 8, 625–631 ( 1996).

    Article  CAS  Google Scholar 

  28. Straub, V. & Campbell, K. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 10, 168– 175 (1997).

    Article  CAS  Google Scholar 

  29. Hayashi, Y. et al. Mutations in the integrin α7 gene cause congenital myopathy. Nature Genet. 19, 94–97 (1998).

    Article  CAS  Google Scholar 

  30. Richard, I. et al. Mutations in the proteolytic gene calpain 3 cause limb girdle muscular dystrophy type 2A. Cell 81, 27– 40 (1995).

    Article  CAS  Google Scholar 

  31. Schon, E.A. & DiMauro, S. Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr. 29, 131–149,.

  32. Haravuori, H. et al. Assignment of the tibial muscular dystrophy locus to chromosome 2q31. Am. J. Hum. Genet. 62, 620– 626 (1998).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, F. & Maniatis, T. Molecular Cloning: A Library Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  34. Benes, V., Kilger, C., Voss, H., Pääbo, S. & Ansorge, W. Direct primer walking on P1 plasmid DNA. Biotechniques 23, 98–100 (1997).

    Article  CAS  Google Scholar 

  35. Aoki, M. et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol. 43, 645–653 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Cecil B. Day Investment Company and the Muscular Dystrophy Association funded many aspects of this project. R.B. is supported by NIH grants 5PO1AG12992, 5RO1N834913A and 5PO1NS31248. J.L. was funded by a post-doctoral fellowship of the Medical Research Council of Canada. M.A. received a stipend from the Muscular Dystrophy Association and the Pierre L de Bourgknecht Fund for ALS Research. P. de J. is supported by NIH (NIHGRI) grant 5RO1 HG1165 and U.S. Department of Energy grant DE-FCO3-96ER62294. E.S. is funded by the Canadian Genome Analysis and Technology Program. B.A.H. and K.J.B. were recipients respectively of NRSA fellowship IF32N10064 and a stipend from the Deater Foundation. I.I. and C.S. received grants from the Fondo Investigationes Sanitarias (F.I.S. 96/0863 and 98/5065 B.A.E.). C.A. is funded by grants from Telethon 916C and C19 and from a Finalized Research Grant 559/01/95 of Veneto Region. K.A. is supported by the Ministry of Health and Welfare (Japan) grants for the Center of Excellence and Brain Sciences. J.U. and M.F. are supported by the AFM, which funded family DNA collections in France; M.F. is also funded by Inserm (U153). We are grateful to L. Hayward for discussions of the predicted properties of dysferlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Brown Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Aoki, M., Illa, I. et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20, 31–36 (1998). https://doi.org/10.1038/1682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1682

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing