Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks

Abstract

Minisatellites are tandemly repeated DNA sequences of 10–100-bp units1. Some minisatellite loci are highly unstable in the human germ line, and structural analysis of mutant alleles has suggested that repeat instability results from a recombination-based process. To provide insights into the molecular mechanism of human minisatellite instability, we developed Saccharomyces cerevisiae strains carrying alleles of the most unstable human minisatellite locus, CEB1 (ref. 2). We observed that CEB1 is destabilized in meiosis, resulting in a variety of intra- and inter-allelic gains or losses of repeat units, similar to rearrangements described in humans3. Using mutations affecting the initiation of recombination4,5 (spo11) or mismatch repair6 (msh2 pms1 ), we demonstrate that meiotic destabilization depends on the initiation of homologous recombination at nearby DNA double-strand break (DSBs) sites and involves a 'rearranged heteroduplex' intermediate. Most of the human and yeast data can be explained and unified in the context of DSB repair models7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental system.
Figure 2: Detection of meiotic double-strand breaks near the CEB1 insert on chromosome VIII.
Figure 3: Examples of intra- and inter-allelic CEB1 rearrangements obtained in the msh2 pms1 background.
Figure 4: A DSB-repair model to explain meiotic CEB1 rearrangements.

Similar content being viewed by others

References

  1. Jeffreys, A.J., Wilson, V. & Thein, S.L. Hypervariable "minisatellite" regions in human DNA. Nature 314, 67–73 ( 1985).

    Article  CAS  Google Scholar 

  2. Buard, J. & Vergnaud, G. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13, 3203–3210 (1994).

    Article  CAS  Google Scholar 

  3. Buard, J., Bourdet, A., Yardley, J., Dubrova, Y. & Jeffreys, A.J. Influences of array size and homogeneity on minisatellite mutation. EMBO J. 17, 3495– 3502 (1998).

    Article  CAS  Google Scholar 

  4. Bergerat, A. et al. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414 –417 (1997).

    Article  CAS  Google Scholar 

  5. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  6. Alani, E., Reenan, R.A. & Kolodner, R.D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137, 19–39 (1994).

    CAS  PubMed Central  Google Scholar 

  7. Pâques, F. & Haber, J.E. Multiple pathways of double strand break-induced recombination in Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 63, 349 –404 (1999).

    PubMed Central  Google Scholar 

  8. Nicolas, A., Treco, D., Schultes, N.P. & Szostak, J.W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35– 39 (1989).

    Article  CAS  Google Scholar 

  9. Sun, H., Treco, D., Schultes, N.P. & Szostak, J.W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338, 87–90 ( 1989).

    Article  CAS  Google Scholar 

  10. de Massy, B. & Nicolas, A. The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae. EMBO J. 12 , 1459–1466 (1993).

    Article  CAS  Google Scholar 

  11. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419– 436 (1990).

    Article  CAS  Google Scholar 

  12. Klapholz, S. & Esposito, R.E. Isolation of SPO12-1 and SPO13-1 from a natural variant of yeast that undergoes a single meiotic division. Genetics 96, 567– 588 (1980).

    CAS  PubMed Central  Google Scholar 

  13. Baudat, F. & Nicolas, A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl Acad. Sci. USA 94, 5213–5218 (1997).

    Article  CAS  Google Scholar 

  14. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  Google Scholar 

  15. Lichten, M. & Goldman, A.S. Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423– 444 (1995).

    Article  CAS  Google Scholar 

  16. Kirkpatrick, D.T. & Petes, T.D. Repair of DNA loops involves DNA-mismatch and nucleotide excision repair proteins. Nature 387, 929–931 ( 1997).

    Article  CAS  Google Scholar 

  17. Sia, E.A., Kokoska, R.J., Dominska, M., Greenwell, P. & Petes, T.D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17, 2851–2858 (1997).

    Article  CAS  Google Scholar 

  18. Lichten, M. et al. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc. Natl Acad. Sci. USA 87, 7653–7657 ( 1990).

    Article  CAS  Google Scholar 

  19. Appelgren, H., Cederberg, H. & Rannug, U. Mutations at the human minisatellite MS32 integrated in yeast occur with high frequency in meiosis and involve complex recombination events. Mol. Gen. Genet. 256, 7– 17 (1997).

    Article  CAS  Google Scholar 

  20. Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: Meiotic functions promote a highly differentiated interhomolog only pathway. Cell 90, 1123– 1135 (1997).

    Article  CAS  Google Scholar 

  21. Borde, V., Wu, T.C. & Lichten, M. Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–4842 (1999).

    Article  CAS  Google Scholar 

  22. Monckton, D.G. et al. Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nature Genet. 8, 162–170 (1994).

    Article  CAS  Google Scholar 

  23. Bois, P., Collick, A., Brown, J. & Jeffreys, A.J. Human minisatellite MS32 (D1S8) displays somatic but not germline instability in transgenic mice. Hum. Mol. Genet. 6, 1565– 1571 (1997).

    Article  CAS  Google Scholar 

  24. Keeney, S. et al. A mouse homolog of the S. cerevisiae meiotic recombination DNA transesterase Spo11p. Genomics (in press).

  25. Romanienko, P.J. & Camerini-Otero, R.D. Cloning, characterization and localization of the mouse and human SPO11. Genomics (in press).

  26. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136– 145 (1994).

    Article  CAS  Google Scholar 

  27. Tamaki, K., May, C.A., Dubrova, Y.E. & Jeffreys, A. Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum. Mol. Genet. 8, 879–888 (1999).

    Article  CAS  Google Scholar 

  28. Jeffreys, A.J. & Neuman, R. Somatic mutation process at a human minisatellite. Hum. Mol. Genet. 6, 129–132 (1997).

    Article  CAS  Google Scholar 

  29. Rocco, V., de Massy, B. & Nicolas, A. The Saccharomyces cerevisiae ARG4 initiator of meiotic gene conversion and its associated double-strand DNA breaks can be inhibited by transcriptional interference. Proc. Natl Acad. Sci. USA 89, 12068–12072 ( 1992).

    Article  CAS  Google Scholar 

  30. Vincent, R.D., Hofmann, T.J. & Zassenhaus, H.P. Sequence and expression of NUC1, the gene encoding the mitochondrial nuclease in Saccharomyces cerevisiae. Nucleic Acids Res. 16, 3297–3312 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for technical advice, materials and helpful discussions; K. Smith for English correction; and R. Rothstein for helpful discussion. This study was supported by an initial grant from the Groupement de Recherches et d'Etudes sur les Génomes and subsequently by the Association de Recherche contre le Cancer (ARC), the Ligue Nationale contre le Cancer, the D.G.A/D.S.P/S.T.T.C, the Human Frontier Scientific Program and the Radiobiology program of the Institut Curie. H.D. was supported by graduate student fellowships from the MNERT and the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Nicolas.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debrauwère, H., Buard, J., Tessier, J. et al. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. Nat Genet 23, 367–371 (1999). https://doi.org/10.1038/15557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15557

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing