Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit

Abstract

Stargazer mice have spike-wave seizures characteristic of absence epilepsy, with accompanying defects in the cerebellum and inner ear. We describe here a novel gene, Cacng2, whose expression is disrupted in two stargazer alleles. It encodes a 36-kD protein (stargazin) with structural similarity to the γ subunit of skeletal muscle voltage-gated calcium (Ca2+) channels. Stargazin is brain-specific and, like other neuronal Ca2+-channel subunits, is enriched in synaptic plasma membranes. In vitro, stargazin increases steady-state inactivation of α1 class A Ca2+ channels. The anticipated effect in stargazer mutants, inappropriate Ca2+ entry, may contribute to their more pronounced seizure phenotype compared with other mouse absence models with Ca2+-channel defects. The discovery that the stargazer gene encodes a γ subunit completes the identification of the major subunit types for neuronal Ca2+ channels, namely α1, α2δ, β and γ, providing a new opportunity to understand how these channels function in the mammalian brain and how they may be targeted in the treatment of neuroexcitability disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An ETn insertion is genetically and physically linked with the stg locus on mouse chromosome 15.
Figure 2: Stargazin protein sequence and similarity to the γ subunit of voltage-gated skeletal muscle Ca2+ channels.
Figure 3: >Stargazin RNA expression in normal and mutant animals.
Figure 4: Stargazin RNA distribution.
Figure 5: Western-blot analysis and immunoprecipitation of stargazin.
Figure 6: Functional effect of stargazin on neuronal Ca2+ channel activity.

Similar content being viewed by others

References

  1. Ottman, R., Hauser, W.A., Barker-Cummings, C., Lee, J.H. & Risch, N. Segregation analysis of cryptogenic epilepsy and an empirical test of the validity of the results. Am. J. Hum. Genet. 60, 667–675 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Charlier, C. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature Genet. 18, 53– 55 (1998).

    Article  CAS  Google Scholar 

  3. Singh, N.A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nature Genet. 18, 25– 29 (1998).

    Article  CAS  Google Scholar 

  4. Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science 279, 403–406 ( 1998).

    Article  CAS  Google Scholar 

  5. Smart, S.L. et al. Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–819 ( 1998).

    Article  CAS  Google Scholar 

  6. Homanics, G.E. et al. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl Acad. Sci. USA 94, 4143–4148 ( 1997).

    Article  CAS  Google Scholar 

  7. Brusa, R. et al. Early-onset epilepsy and posnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677 –1680 (1995).

    Article  CAS  Google Scholar 

  8. Noebels, J.L. Mutational analysis of inherited epilepsies. in Basic Mechanisms of the Epilepsies: Molecular and Cellular Approaches. (eds Delgado-Escueta, A.V., Ward, A.A., Woodbury, D.M. & Porter, R.J.) 44, 97– 113 (Raven Press, New York, 1986).

    Google Scholar 

  9. Noebels, J.L., Qiao, X., Bronson, R.T., Spencer, C. & Davisson, M.T. Stargazer: a new neurological mutant on Chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res. 7, 129–135 ( 1990).

    Article  CAS  Google Scholar 

  10. Cox, G.A. et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell 91, 1–20 ( 1997).

    Article  Google Scholar 

  11. Fletcher, C.F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607–617 (1996).

    Article  CAS  Google Scholar 

  12. Burgess, D.L., Jones, J.M., Meisler, M.H. & Noebels, J.L. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88, 385–392 ( 1997).

    Article  CAS  Google Scholar 

  13. Bito, H., Deisseroth, K. & Tsien, R.W. Ca2+-dependent regulation in neuronal gene expression. Curr. Opin. Neurobiol. 7, 419–429 (1997).

    Article  CAS  Google Scholar 

  14. Dunlap, K., Leubke, J.I. & Turner, T.J. Exocytotic calcium channels in mammalian central neurons . Trends Neurosci. 18, 89– 98 (1995).

    Article  CAS  Google Scholar 

  15. Varadi, G., Mori, Y., Mikala, G. & Schwartz, A. Molecular determinants of Ca2+ channel function and drug action. Trends Pharmacol. Sci. 16, 43–49 (1995).

    Article  CAS  Google Scholar 

  16. Nooney, J.M., Lambert, R.C. & Feltz, A. Identifying neuronal non-L Ca2+ channels — more than stamp collecting? Trends Pharmacol. Sci. 18, 363–371 (1997).

    CAS  PubMed  Google Scholar 

  17. Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896– 900 (1998).

    Article  CAS  Google Scholar 

  18. De Waard, M., Gurnett, C.A. & Campbell, K.P. Structural and functional diversity of voltage-activated calcium channels. in Ion Channels (ed. Narahashi, T.) 41–87 (Plenum Press, New York, 1996 ).

    Chapter  Google Scholar 

  19. Jay, S.D. et al. Primary structure of the γ subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 248, 490– 492 (1990).

    Article  CAS  Google Scholar 

  20. Ludwig, A., Flockerzi, V. & Hofmann, F. Regional expression and cellular localization of the α1 and β subunit of high voltage-activated calcium channels in rat brain. J. Neurosci. 17, 1339–1349 ( 1997).

    Article  CAS  Google Scholar 

  21. Walker, D. & De Waard, M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154 (1998).

    Article  CAS  Google Scholar 

  22. Scott, V.E.S. et al. β subunit heterogeneity in N-type Ca2+ channels. J. Biol. Chem. 271, 3207–3212 (1996).

    Article  CAS  Google Scholar 

  23. Liu, H. et al. Identification of three subunits of the high affinity ω-conotoxin MVIIC-sensitive Ca+2 channel. J. Biol. Chem. 271, 13804– 13810 (1996).

    Article  CAS  Google Scholar 

  24. Sweet, H.O., Bronson, R.T., Cook, S., Spencer, C. & Davisson, M.T. Research News. 1. Waggler (wag). Mouse Genome 89, 552 552 ( 1991).

    Google Scholar 

  25. Letts, V.A. et al. Genetic and physical maps of the stargazer locus on mouse Chromosome 15. Genomics 43, 62–68 ( 1997).

    Article  CAS  Google Scholar 

  26. Morgan, J.G., Dolganov, G.M., Robbins, S.E., Hinton, L.M. & Lovett, M. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res. 20, 5173–5179 (1992).

    Article  CAS  Google Scholar 

  27. Eberst, R., Dai, S., Klugbauer, N. & Hofmann, F. Identification and functional characterization of a calcium channel γ subunit. Pflügers Arch. - Eur. J. Physiol. 433, 633–637 (1997).

    Article  CAS  Google Scholar 

  28. Wissenbach, U. et al. The structure of the murine calcium channel γ-subunit gene and protein . Biol. Chem. 379, 45–50 (1998).

    Article  CAS  Google Scholar 

  29. Scott, V.E.S., Felix, R., Arikkath, J. & Campbell, K.P. Evidence for a 95 kDa short form of the α1A subunit associated with the ω-Conotoxin MVIIC receptor of the P/Q-type Ca2+ channels. J. Neurosci. 18, 641–647 (1998).

    Article  CAS  Google Scholar 

  30. Singer, D. et al. The roles of the subunits in the function of the calcium channel. Science 253, 1553–1557 ( 1991).

    Article  CAS  Google Scholar 

  31. Wei, X.Y. et al. Heterologous regulation of the cardiac Ca2+ channel α1 subunit by skeletal muscle β and γ subunits. Implications for the structure of cardiac L-type Ca2+ channels. J. Biol. Chem. 266, 21943–21947 (1991).

    CAS  PubMed  Google Scholar 

  32. Lerche, H., Klugbauer, N., Lehmann-Horn, F., Hofmann, F. & Melzer, W. Expression and functional characterization of the cardiac L-type calcium channel carrying a skeletal muscle DHP-receptor mutation causing hypokalaemic periodic paralysis. Pflugers Arch. - Eur. J. Physiol. 431, 461–463 ( 1996).

    Article  CAS  Google Scholar 

  33. Niidome, T. et al. Stable expression of the neuronal BI (class A) calcium channel in baby hamster kidney cells. Biochem. Biophys. Res. Commun. 203, 1821–1827 (1994).

    Article  CAS  Google Scholar 

  34. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991).

    Article  CAS  Google Scholar 

  35. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl Acad. Sci. USA 90, 1756–1760 (1993).

    Article  CAS  Google Scholar 

  36. Herrmann, B.G. & Kispert, A. The T genes in embryogenesis . Trends in Genet. 10, 280– 286 (1994).

    Article  CAS  Google Scholar 

  37. Moon, B.C. & Friedman, J.M. The molecular basis of the obese mutation in ob2J mice. Genomics 42, 152–156 (1997).

    Article  CAS  Google Scholar 

  38. Leveque, C. et al. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J. Biol. Chem. 271, 13804–13810 ( 1994).

    Google Scholar 

  39. Westenbroek, R.E. et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15 , 6403–6418 (1995).

    Article  CAS  Google Scholar 

  40. Di Pasquale, E., Keegan, K.D. & Noebels, J.L. Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stargazer . J. Neurophysiol. 77, 621– 631 (1997).

    Article  CAS  Google Scholar 

  41. Lüthi, A. & McCormick, D.A. Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih. Neuron 20, 553–563 ( 1998).

    Article  Google Scholar 

  42. Qiao, X., Hefti, F., Knusel, B. & Noebels, J.L. Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. J. Neurosci. 16, 640– 648 (1996).

    Article  CAS  Google Scholar 

  43. Qiao, X. et al. Selective failure of TDNF/TrkB signal transduction in cerebellum associated with impairment of classical eyeblink conditioning in stargazer mutant mice . J. Neurosci. in press, (1998).

  44. Noebels, J.L. & Sidman, R.L. Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering. Science 204, 1334–1336 ( 1979).

    Article  CAS  Google Scholar 

  45. Hosford, D.A. et al. The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257, 398– 401 (1992).

    Article  CAS  Google Scholar 

  46. Lorenzon, N.M., Lutz, C.M., Frankel, W.N. & Beam, K.G. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J. Neurosci. 18, 4482– 4489 (1998).

    Article  CAS  Google Scholar 

  47. Lambert, R.C. et al. T-type Ca2+ current properties are not modified by Ca2+ channel β subunit depletion in nodosus ganglion neurons. J. Neurosci. 17, 6621–6628 (1997).

    Article  CAS  Google Scholar 

  48. Segre, J.A., Nemhauser, J.L., Taylor, B.A., Nadeau, J.H. & Lander, E.S. Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 28, 549–559 ( 1995).

    Article  CAS  Google Scholar 

  49. Taylor, B.A., Rowe, L. & Grieco, D.A. The MEV mouse linkage testing stock: mapping 30 novel proviral insertions and establishment of an improved stock. Genomics 16 , 380–394 (1993).

    Article  CAS  Google Scholar 

  50. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd Edition. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  51. Harlow, E. & Lane, D. Antibodies, A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  52. Sharp, A.H. & Campbell, K.P. Characterization of the 1,4-dihydropyridine receptor using subunit-specific polyclonal antibodies. Evidence for a 32,000-Da subunit. J. Biol. Chem. 264, 2816– 2825 (1989).

    CAS  PubMed  Google Scholar 

  53. Jones, D.H. & Matus, A.I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation . Biochim. Biophys. Acta 356, 276– 287 (1974).

    Article  CAS  Google Scholar 

  54. Witcher, D.R., De Waard, M., Kahl, S.D. & Campbell, K.P. Purification and reconstitution of N-type calcium channel complex from rabbit brain. Meth. Enzymol. 238, 335–348 (1994).

    Article  CAS  Google Scholar 

  55. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 ( 1970).

    Article  CAS  Google Scholar 

  56. Kingston, R.E. Introduction of DNA into mammalian cells. in Current Protocols in Molecular Biology, (eds Ausubel, F. M. et al.) 9.1.1– 9.1.11 (John Wiley & Sons, New York, 1997).

    Google Scholar 

  57. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. - Eur. J. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  58. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs . Nucleic Acids Res. 25, 3389– 3402 (1997).

    Article  CAS  Google Scholar 

  59. Hofmann, K. & Stoffel, W. TMbase - A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 347, 166 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank P. Nishina for the cDNA library, S. Ackerman, S. Przyborski, J. Gervais, S. Hipkens, A. Costa, G. Yellen, K. Shin, L. Salkoff and R. Coral for advice or assistance at various points in the project and C. Dunbar for expert animal care. We are also grateful to G. Cox and S. Ackerman for review of a preliminary version of this manuscript, and The Jackson Laboratory Mouse Mutant Resource for providing mice. This work was supported by NIH grant NS32801 to V.A.L. and a Klingenstein Fellowship in the Neurosciences to W.N.F. R.F. is supported by a Human Frontier Science Program postdoctoral fellowship. K.P.C. is an investigator of the Howard Hughes Medical Institute. G.H.B. is supported in part by a fellowship from the U. of Iowa Cardiovascular Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Verity A. Letts or Wayne N. Frankel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letts, V., Felix, R., Biddlecome, G. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat Genet 19, 340–347 (1998). https://doi.org/10.1038/1228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing