Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa

Abstract

Inherited retinal diseases are a common cause of visual impairment in children and young adults, often resulting in severe loss of vision in later life. The most frequent form of inherited retinopathy is retinitis pigmentosa (RP), with an approximate incidence of 1 in 3,500 individuals worldwide1,2. RP is characterized by night blindness and progressive degeneration of the midperipheral retina, accompanied by bone spicule-like pigmentary deposits and a reduced or absent electroretinogram (ERG). The disease process culminates in severe reduction of visual fields or blindness. RP is genetically heterogeneous, with autosomal dominant, autosomal recessive and X-linked forms. Here we have identified two mutations in a novel retina-specific gene from chromosome 8q that cause the RP1 form of autosomal dominant RP in three unrelated families. The protein encoded by this gene is 2,156 amino acids and its function is currently unknown, although the amino terminus has similarity to that of the doublecortin protein, whose gene (DCX) has been implicated in lissencephaly in humans17. Two families have a nonsense mutation in codon 677 of this gene (Arg677stop), whereas the third family has a nonsense mutation in codon 679 (Gln679stop). In one family, two individuals homozygous for the mutant gene have more severe retinal disease compared with heterozygotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene and protein structure of RP1.
Figure 2: Sequence electropherograms of mutations found in three adRP families.
Figure 3: Pedigree and mutation screen of a consanguineous nuclear family in UCLA-RP01.
Figure 4: Expression of RP1 transcript in human tissues.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Heckenlively, J.R. Retinitis Pigmentosa (J.B. Lippincott, Philadelphia, 1988).

  2. Heckenlively, J.R. & Daiger, S.P. Hereditary retinal and choroidal degenerations. in Principals and Practices of Medical Genetics (eds Rimon, D.L., Conner, J.M. & Pyeritz, R.E.) 2555 –2576 (Churchill Livingstone, New York, 1997).

    Google Scholar 

  3. Banerjee, P. et al. TULP1 mutation in two recessive extended Dominican kindreds with autosomal recessive retinitis pigmentosa. Nature Genet. 18, 177–179 ( 1998).

    Article  CAS  Google Scholar 

  4. Cremers, F.P.M. et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum. Mol. Genet. 7, 355–362 (1998).

    Article  CAS  Google Scholar 

  5. Dryja, T.P. et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343, 364– 366 (1990).

    Article  CAS  Google Scholar 

  6. Dryja, T.P. et al. Mutations in the gene encoding the α subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl Acad. Sci. USA 92, 10177– 10181 (1995).

    Article  CAS  Google Scholar 

  7. Hagstrom, S.A., North, M.A., Nishina, P.M., Berson, E.L. & Dryja, T.P. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nature Genet. 18, 174– 176 (1998).

    Article  CAS  Google Scholar 

  8. Huang S.H. et al. Autosomal recessive retinitis pigmentosa caused by mutations in the α subunit of rod cGMP phosphodiesterase. Nature Genet. 11, 468–471 ( 1995).

    Article  CAS  Google Scholar 

  9. Kajiwara, K. et al. Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354, 480–483 (1991).

    Article  CAS  Google Scholar 

  10. Kajiwara, K., Berson, E.L. & Dryja, T.P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608 (1994).

    Article  CAS  Google Scholar 

  11. Martinez-Mir, A. et al. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nature Genet. 18 , 11–12 (1998).

    Article  CAS  Google Scholar 

  12. Maw, M.A. et al. Mutations in the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nature Genet. 17, 198–200 ( 1997).

    Article  CAS  Google Scholar 

  13. McLaughlin, M.E., Sandberg, M.A., Berson, E.L. & Dryja, T.P. Recessive mutations in the gene encoding the β-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet. 4, 130–134 (1993).

    Article  CAS  Google Scholar 

  14. Meindl, A. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nature Genet. 13, 35–42 (1996).

    Article  CAS  Google Scholar 

  15. Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet. 19, 327– 332 (1998).

    Article  CAS  Google Scholar 

  16. Sohocki, M.M. et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription factor gene. Am. J. Hum. Genet. 63, 1307–1315 ( 1998).

    Article  CAS  Google Scholar 

  17. Sossey-Alaoui, K. et al. Human doublecortin (DCX) and the homologous gene in mouse encode a putative Ca2+-dependent signaling protein which is mutated in human X-linked neuronal migration defects. Hum. Mol. Genet. 7, 1327–1332 ( 1998).

    Article  CAS  Google Scholar 

  18. Blanton, S.H. et al. Linkage mapping of autosomal dominant retinitis pigmentosa (RP1) to the pericentric region of human chromosome 8. Genomics 11, 857–869 ( 1991).

    Article  CAS  Google Scholar 

  19. Xu, S.-Y., Denton, M., Sullivan, L.S., Daiger, S.P. & Gal, A. Genetic mapping of RP1 on 8q11-q21 in an Australian family with autosomal dominant retinitis pigmentosa reduces the critical region to 4 cM between D8S601 and D8S285. Hum. Genet. 98, 741–743 ( 1996).

    Article  CAS  Google Scholar 

  20. Inglehearn, C.F. et al. A new family linked to the RP1 dominant retinitis pigmentosa locus on 8q. J. Med. Genet. (in press).

  21. Jimenez, J.B. et al. No evidence of linkage between the locus for autosomal dominant retinitis pigmentosa and D3S47 (C17) in three Australian families. Hum. Genet. 86, 265–267 (1991).

    Article  CAS  Google Scholar 

  22. Daiger, S.P. et al. Progress in positional cloning of RP10 (7q31.3), RP1 (8q11-q21) and VMD1 (8q24). in Degenerative Retinal Diseases (eds LaVail, M., Hollyfield, J.G. & Anderson, R.E.) 277–289 (Plenum Publishing, New York, 1997).

    Chapter  Google Scholar 

  23. Roderick, T.H., Chang, B., Hawes, N.L. & Heckenlively, J.R. A new dominant retinal degeneration (Rd4) associated with a chromosomal inversion in the mouse. Genomics 42, 393– 396 (1997).

    Article  CAS  Google Scholar 

  24. Hannan, A.J. et al. Expression of doublecortin correlates with neuronal migration and pattern formation in diverse regions of the developing chick brain. J. Neurosci. Res. 55, 650–657 (1999).

    Article  CAS  Google Scholar 

  25. Omori, Y. et al. Expression and chromosomal localization of KIAA0369, a putative kinase structurally related to doublecortin. J. Hum. Genet. 43, 169–177 (1998).

    Article  CAS  Google Scholar 

  26. Matsumoto, N., Pilz, D.T. & Ledbetter, D.H. Genomic structure, chromosomal mapping, and expression pattern of human DCAMKL1 (KIAA0369), a homologue of DCX (XLIS). Genomics 56, 179–183 ( 1999).

    Article  CAS  Google Scholar 

  27. Nagase T. et al. Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 4, 141–150 (1997).

    Article  CAS  Google Scholar 

  28. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank family members of UCLA-RP01 for participation, R. McInnes for retinal northern blots and P. Forsythe for technical assistance. This work was supported by grants from the Foundation Fighting Blindness and the George Gund Foundation, the William Stamps Farish Fund, the M.D. Anderson Foundation, the John S. Dunn Research Foundation, grant EY07142 from the National Eye Institute-National Institutes of Health (L.S.S., S.J.B. and S.P.D.), grant 5-FY98-0725 from the March of Dimes Birth Defects Foundation (J.Z.), a grant from the British Retinitis Pigmentosa Society and grant 035535/Z/96 from the Wellcome Trust (C.F.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori S. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, L., Heckenlively, J., Bowne, S. et al. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 22, 255–259 (1999). https://doi.org/10.1038/10314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing