Skip to main content
Log in

Monosomy 1p36 breakpoints indicate repetitive DNA sequence elements may be involved in generating and/or stabilizing some terminal deletions

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Monosomy 1p36 is the most commonly observed terminal deletion syndrome in humans. Our previous molecular studies on a large cohort of subjects suggest that monosomy 1p36 can result from a variety of chromosomal rearrangements including terminal truncations, interstitial deletions, derivative chromosomes, inverted duplications, and complex rearrangements. However, the mechanism(s) by which rearrangements of 1p36 are generated and/or stabilized is not understood. Sequence analysis of breakpoint junctions may provide valuable clues to the underlying mechanisms of many chromosomal aberrations. In this report, we analyze the breakpoints at the DNA-sequence level in four subjects with variable-sized deletions of 1p36. All four breakpoints fall within repetitive DNA-sequence elements (LINEs, SINEs, etc). This suggests that repetitive DNA-sequence elements may play an important role in generating and/or stabilizing terminal deletions of 1p36. Mechanisms by which repetitive elements may be involved in the process of terminal deletion formation and stabilization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ballif BC, Kashork CD, Shaffer LG (2000) FISHing for mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur J Hum Genet 8: 764-770.

    Article  PubMed  CAS  Google Scholar 

  • Ballif BC, Yu W, Shaw CA, Kashork CD, Shaffer LG (2003) Monosomy 1p36 breakpoints suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12: 2153-2165.

    Article  PubMed  CAS  Google Scholar 

  • Ballif BC, Wakui K, Gajecka M, Shaffer LG (2004) Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements. Hum Genet 114: 198-206.

    Article  PubMed  CAS  Google Scholar 

  • Bois P, Jeffreys AJ (1999) Minisatellite instability and germline mutation. Cell Mol Life Sci 55: 1636-1648.

    Article  PubMed  CAS  Google Scholar 

  • Borgaonkar DS (1984) Chromosomal Variation in Man, 4 th edn. Liss, New York.

    Google Scholar 

  • Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150: 1037-1047.

    PubMed  CAS  Google Scholar 

  • Brkanac Z, Cody JD, Leach RJ, DuPont BR (1998) Identification of cryptic rearrangements in patients with 18qdeletion syndrome. Am J Hum Genet 62: 1500-1506.

    Article  PubMed  CAS  Google Scholar 

  • Bzymek M, Lovett ST (2001) Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 98: 8319-8325.

    Article  PubMed  CAS  Google Scholar 

  • Catrinel Marinescu R, Johnson EI, Grady D, Chen X-N, Overhauser J (1999) FISH analysis of terminal deletions in patients diagnosed with cri-du-chat syndrome. Clin Genet 56: 282-288.

    Article  Google Scholar 

  • Cervantes RB, Lundblad V (2002) Mechanisms of chromosome-end protection. Curr Opin Cell Biol 14: 351-356.

    Article  PubMed  CAS  Google Scholar 

  • Christ LA, Crowe CA, Micale MA, Conroy JM, Schwartz S (1999) Chromosome breakage hotspots and delineation of the critical region for 9p-deletion syndrome. Am J Hum Genet 65: 1387-1395.

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67: 183-193.

    Article  PubMed  CAS  Google Scholar 

  • Difilippantonio MJ, Petersen S, Chen HT et al. (2002) Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 196: 469-480.

    Article  PubMed  CAS  Google Scholar 

  • Edelmann L, Spiteri E, Koren K et al. (2001) AT-rich palindromes mediate the constitutional t(11;22) translocation. Am J Hum Genet 68: 1-13.

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Craddock CF, Villegas A et al. (1994) Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 55: 505-512.

    PubMed  CAS  Google Scholar 

  • Flint J, Rochette J, Craddock CF et al. (1996) Chromosomal stabilization by a subtelomeric rearrangement involving two closely related Alu elements. Hum Mol Genet 5: 1163-1169.

    Article  PubMed  CAS  Google Scholar 

  • Heilstedt HA, Ballif BC, Howard LA et al. (2003a) Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet 72: 1200-1212.

    Article  PubMed  CAS  Google Scholar 

  • Heilstedt HA, Ballif BC, Howard LA et al. (2003b) Population data suggest deletions of 1p36 are a relatively common chromosome abnormality. Clin Genet 64: 310-316.

    Article  PubMed  CAS  Google Scholar 

  • Horsley SW, Daniels RJ, Anguita E et al. (2001) Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects. Eur J Hum Genet 9: 217-225.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409: 860-921.

    Article  Google Scholar 

  • Katz SG, Schneider SS, Bartuski A et al. (1999) An 18q-syndrome breakpoint resides between the duplicated serpins SCCA1 and SCCA2 and arises via a cryptic rearrangement with satellite III DNA. Hum Mol Genet 8: 87-92.

    Article  PubMed  CAS  Google Scholar 

  • Knight SJ, Flint J (2000) Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 37: 401-409.

    Article  PubMed  CAS  Google Scholar 

  • Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552-557.

    Article  PubMed  CAS  Google Scholar 

  • Kolomietz E, Meyn MS, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35: 97-112.

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi H, Shaikh T, Takata M, Toda T, Emanuel BS (2003) The constitutional t(17;22): Another translocation mediated by palindromic AT-rich repeats. Am J Hum Genet 72: 733-738.

    Article  PubMed  CAS  Google Scholar 

  • Lamb J, Harris PC, Wilkie AOM, Wood WG, Dauwerse JHG, Higgs DR (1993) De novo truncation of chromosome 16p and healing with (TTAGGG)n in the ?-thalassemia/mental retardation syndrome (ATR-16). Am J Hum Genet 52: 668-676.

    PubMed  CAS  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34: 331-358.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan X-Y, Trent JM (1993) Telomere capture stabilizes chromosome breakage. Nat Genet 4: 252-255.

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Shaffer LG (1997) Nonhomologous Robertsonian translocations form predominantly during female meiosis. Nat Genet 15: 231-232.

    Article  PubMed  CAS  Google Scholar 

  • Pipiras E, Coquelle A, Bieth A, Debatisse M (1998) Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17: 325-333.

    Article  PubMed  CAS  Google Scholar 

  • Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000 405: 697-700.

    CAS  Google Scholar 

  • Shaffer LG, Lupski JR (2000) Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 34: 297-329.

    Article  PubMed  CAS  Google Scholar 

  • Shapira SK, McCaskill C, Northrup H et al. (1997) Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet 61: 642-650.

    PubMed  CAS  Google Scholar 

  • Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74-82.

    Article  PubMed  CAS  Google Scholar 

  • Varley H, Di S, Scherer SW, Royle NJ (2000) Characterization of terminal deletions at 7q32 and 22q13.3 healed by de novo telomere addition. Am J Hum Genet 67: 610-622.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie AOM, Lamb J, Harris PC, Finney RD, Higgs DR (1990) A truncated human chromosome 16 associated with ? thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346: 868-871.

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Rainville IR, Nicklas JA (2002) Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. Environ Mol Mutagen 39: 22-32.

    Article  PubMed  CAS  Google Scholar 

  • Wong ACC, Ning Y, Flint J et al. (1997) Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet 60: 113-120.

    PubMed  CAS  Google Scholar 

  • Wu C, Zhu S, Simpson S, de Jong PJ (1996) DOP-vector PCR: a method for rapid isolation and sequencing of insert termini from PAC clones. Nucleic Acids Res 24: 2614-2615.

    Article  PubMed  CAS  Google Scholar 

  • Wu YQ, Heilstedt HA, Bedell JA et al. (1999) Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions. Hum Mol Genet 8: 313-321.

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Ballif BC, Kashork CD et al. (2003) Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet 12: 2145-2152.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa G. Shaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballif, B.C., Gajecka, M. & Shaffer, L.G. Monosomy 1p36 breakpoints indicate repetitive DNA sequence elements may be involved in generating and/or stabilizing some terminal deletions. Chromosome Res 12, 133–141 (2004). https://doi.org/10.1023/B:CHRO.0000013165.88969.10

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000013165.88969.10

Navigation